Analysis of quicksort

Consider quicksort applied to n values. Let $S(n)$ be the average number of comparisons the algorithm uses. We know $S(0) = S(1) = 0$. The partition operation can be done with exactly $n - 1$ comparisons. Assume that the partition value turns out to have rank q. Then we know its location, but we still have to recursively quicksort the $q - 1$ smallest values and the $n - q$ largest values. So, on average, the remaining steps of quick sort take $S(q - 1) + S(n - q)$ comparisons.

The value of q is equally likely to be any integer from 1 to n. So, on average the remaining steps of quicksort take $\sum_{q=1}^{n} \frac{1}{n} [S(q - 1) + S(n - q)]$ comparisons.

We claim that $S(n) \leq an \lg n$ for some constant a and $n \geq 1$. Proof by constructive induction.

Base case: $n = 1$: $S(1) = 0$ and $a \cdot 1 \cdot \lg 1 = 0$.

Induction step: Assume it holds for all positive integers less than n. Then

\[
S(n) = \sum_{q=1}^{n} \frac{1}{n} [S(q - 1) + S(n - q)] + n - 1
\]

\[
= \frac{1}{n} \sum_{q=1}^{n} [S(q - 1) + S(n - q)] + n - 1
\]

\[
= \frac{1}{n} \sum_{q=1}^{n} S(q - 1) + \frac{1}{n} \sum_{q=1}^{n} S(n - q) + n - 1
\]

\[
= \frac{1}{n} \sum_{q=0}^{n-1} S(q) + \frac{1}{n} \sum_{q=0}^{n-1} S(q) + n - 1
\]

\[
= \frac{2}{n} \sum_{q=0}^{n-1} S(q) + n - 1 = \frac{2}{n} \sum_{q=1}^{n-1} S(q) + n - 1 \quad \text{since } S(0) = 0
\]

\[
\leq \frac{2}{n} \sum_{q=1}^{n-1} aq \lg q + n - 1 \quad \text{by IH}
\]

\[
= \frac{2a}{n} \sum_{q=1}^{n-1} q \lg q + n - 1
\]

\[
\leq \frac{2a}{n} \int_{1}^{n} x \lg x \, dx + n - 1 \quad \text{by integral bound}
\]

\[
= \frac{2a}{n} \left[\frac{x^2 \lg x}{2} - \frac{x^2 \lg e}{4} \right] \bigg|_{1}^{n} + n - 1
\]

\[
= \frac{2a}{n} \left[\left(\frac{n^2 \lg n}{2} - \frac{n^2 \lg e}{4} \right) - \left(\frac{1^2 \lg 1}{2} - \frac{1^2 \lg e}{4} \right) \right] + n - 1
\]

\[
= an \lg n - \frac{an \lg e}{2} + \frac{a \lg e}{2n} + n - 1
\]

\[
= an \lg n + [1 - \frac{a \lg e}{2}] n + \frac{a \lg e}{2n} - 1
\]
\[\leq an \lg n \quad \text{for the induction to hold} \]

If we set \(a = 2/\lg e \approx 1.39 \), we need \(\frac{\lg e}{2n} - 1 \leq 0 \), which always holds (since \(n \geq 1 \)). So,

\[S(n) \approx 1.39n \lg n \]

Now that we are finished, we may realize that

\[S(n) \sim an \lg n = (2/\lg e)n \lg n = 2n \ln n \]

which is a more natural formula. Also, we could go back and do the Constructive Induction with \(S(n) \leq an \ln n \), which would simplify the algebra.