Discrete Structures
 Practice Problems for Midterm 1
 June 16, 2017

1. For sets A, B, C, and D, suppose that $A \backslash B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.

Solution:

We will prove the claim by proving the contrapositive, i.e. that if $x \notin B$, then $x \in D$.

$$
\begin{aligned}
x \in A \wedge x \notin B & \Longrightarrow x \in A \backslash B \\
& \Longrightarrow x \in C \cap D \\
& \Longrightarrow x \in D
\end{aligned}
$$

2. How many sequences of bits are there that have all of the following properties:

- Their length is either 5 or 7 or 9 .
- Their middle bit is a 1.
- The number of 0's they have equals the number of 1's they have minus one.
(Give the answer and an explanation of how you obtained it. No proofs required.)

Solution:

Let S_{5} be the set of all outcomes of length $5, S_{7}$ be the set of all outcomes of length 7 , and S_{9} be the set of all outcomes of length 9 . Note that we are trying to seek $\left|S_{5} \cup S_{7} \cup S_{9}\right|$ and S_{5}, S_{7}, S_{9} are pairwise disjoint, so we can apply the addition rule:

$$
\left|S_{5} \cup S_{7} \cup S_{9}\right|=\left|S_{5}\right|+\left|S_{7}\right|+\left|S_{9}\right|
$$

Let us consider $\left|S_{5}\right|$. Let us consider the following steps:
Step 1. Fix the middle bit to be 1-1 way
Step 2. Pick 2 positions of the remaining 4 to be $0 \mathrm{~s}-\binom{4}{2}$ ways
Step 3. Place 1 s in the remaining positions - 1 way
Hence $\left|S_{5}\right|=\binom{4}{2}$.
Let us consider $\left|S_{7}\right|$. Let us consider the following steps:
Step 1. Fix the middle bit to be 1-1 way
Step 2. Pick 3 positions of the remaining 6 to be $0 \mathrm{~s}-\binom{6}{3}$ ways
Step 3. Place 1 s in the remaining positions - 1 way
Hence $\left|S_{7}\right|=\binom{6}{3}$.
Let us consider $\left|S_{9}\right|$. Let us consider the following steps:
Step 1. Fix the middle bit to be 1-1 way
Step 2. Pick 4 positions of the remaining 8 to be $0 \mathrm{~s}-\binom{8}{4}$ ways
Step 3. Place 1 s in the remaining positions - 1 way
Hence $\left|S_{9}\right|=\binom{8}{4}$.
So we have that:

$$
\left|S_{5} \cup S_{7} \cup S_{9}\right|=\binom{4}{2}+\binom{6}{3}+\binom{8}{4}=96
$$

3. You are choosing a sequence of five characters for a license plate. Your choices for characters are any letter in PERM and any digit in 1223. Your five-character sequence can contain any of these characters at most the number of times they appear in either PERM or 1223 . If there are no other restrictions, how many such sequences are possible?

Solution:

Consider a partition on the set of possible plate sequences, in which we partition by the number of 2's that appear in the sequence. Let S_{0} be the set of plate sequences with no $2 \mathrm{~s}, S_{1}$ be the set of plate sequences with one 2 , and S_{2} be the set of plate sequences with two 2 s . We can count the total number of sequences by

$$
\left.\mid S_{0} \cup S_{1} \cup S_{2}\right]=\left|S_{0}\right|+\left|S_{1}\right|+\left|S_{2}\right|
$$

First, consider $\left|S_{0}\right|$.
Step 1. Choose 0 positions to place 2 s - $\binom{5}{0}$ ways
Step 2. Select a 5 -permutation from $\{P, E, R, M, 1,3\}-P(6,5)$
Therefore, the number of license plates in this case is $\binom{5}{0} \times P(6,5)=P(6,5)$.
Second, consider $\left|S_{1}\right|$.
Step 1. Choose 1 position to place $2 \mathrm{~s}-\binom{5}{1}$ ways
Step 2. Select a 4-permutation from $\{P, E, R, M, 1,3\}-P(6,4)$
Therefore, the number of license plates in this case is $\binom{5}{1} \times P(6,4)$.
Third, consider $\left|S_{2}\right|$.
Step 1. Choose 2 positions to place $2 \mathrm{~s}-\binom{5}{2}$ ways
Step 2. Select a 3 -permutation from $\{P, E, R, M, 1,3\}-P(6,3)$
Therefore, the number of license plates in this case is $\binom{5}{2} \times P(6,3)$.
Thus, the number of license plate sequences is:

$$
P(6,5)+\binom{5}{1} \times P(6,4)+\binom{5}{2} \times P(6,3)=720+5 \times 360+10 \times 120=3720
$$

4. Let A, B be arbitrary sets. Prove by contradiction that

$$
A \subseteq B \Longrightarrow A \backslash(A \cap B)=\varnothing
$$

Solution:

Suppose, for the sake of contradiction, that $A \subseteq B$ but $A \backslash(A \cap B) \neq \varnothing$. Let x be an arbitrary element in $A \backslash(A \cap B)$.

$$
\begin{aligned}
x \in A \backslash(A \cap B) & \Longrightarrow x \in A \wedge x \notin A \cap B \\
& \Longrightarrow x \in A \wedge \neg(x \in A \wedge x \in B) \\
& \Longrightarrow x \in A \wedge(x \notin A \vee x \notin B) \\
& \Longrightarrow(x \in A \wedge x \notin A) \vee(x \in A \wedge x \notin B) \\
& \Longrightarrow x \in A \wedge x \notin B
\end{aligned}
$$

This is a contradiction, since $x \in A \wedge x \notin B$, but we assumed that $A \subseteq B$.
5. Prove that if for some integer $a, a \geq 3$, then $a^{2}>2 a+1$.

Solution:

We note that $3 a>2 a+1$, since $a>1$. So if we can show that $a^{2} \geq 3 a$, then we have that $a^{2}>2 a+1$.
We know that $a \geq 3$, so we can conclude $a * a \geq 3 * a$. Hence our proof is complete.

