CMSC 250: Discrete Structures

Summer 2017

Lecture 11 - Outline

June 16, 2017

Principle of Inclusion-Exclusion

Problem: How many strings are there of four lower-case letters that have the letter x in them?

Solution: Let S be the set of all possible four-letter strings that can be constructed using lower-case letters. The set S can be partitioned into two sets S_1 and S_2 where S_1 is the set of all strings that contain at least one x and S_2 is the set of strings that do not contain x. Hence we have

$$|S| = |S_1| + |S_2| \tag{1}$$

Let us determine |S|, and let the outcome in S be a 4-tuple that directly represents the string. We can construct an outcome in the following way:

- Step 1. Choose the 1st letter 26 ways
- Step 2. Choose the 2nd letter 26 ways
- Step 3. Choose the 3rd letter 26 ways
- Step 4. Choose the 4th letter 26 ways

By the multiplication rule, $|S| = 26^4$.

Let us determine $|S_2|$, and let the outcome in S_2 be a 4-tuple that directly represents the string. We can construct an outcome in the following way:

- Step 1. Choose the 1st letter 25 ways (any letter but x)
- Step 2. Choose the 2nd letter 25 ways
- Step 3. Choose the 3rd letter 25 ways
- Step 4. Choose the 4th letter 25 ways

By the multiplication rule, $|S_2| = 25^4$.

Substituting these values in equation (1) we get

$$|S_1| = 26^4 - 25^4 = 66351$$

Incorrect Solution. Here is an incorrect solution. Can you figure out what is wrong?

A four letter string that contains x can be constructed in two steps as follows.

• Choose a letter to be x - 4 ways

• Choose the other 3 letters -26^3 ways

By the multiplication rule, there are $4 \cdot 26^3 = 70304$ four letter strings that contain x.

Problem:

A certain course consists of 75 people, with an equal number of people from each class (25 freshman, 25 sophomores, and 25 juniors). The professor wants to form a committee of 9 people such that the committee contains at least one person from each year. How many ways can the professor form such a committee?

Solution:

We solve the problem by using complementary counting. First, we find the total number of ways to form committees with no restriction. This is simply choosing 9 people from 75, or $\binom{75}{9}$.

Next, we need to subtract the number of committees that are missing at least one of the years. We use the following sets:

 C_1 : Committees that don't have any freshman

 C_2 : Committees that don't have any sophomores

 C_3 : Committees that don't have any juniors

Note that $C_1 \cup C_2 \cup C_3$ contains all of the committees that are missing at least one of the class years. In order to determine $|C_1 \cup C_2 \cup C_3|$, we can use PIE.

$$|C_1 \cup C_2 \cup C_3| = |C_1| + |C_2| + |C_3| - |C_1 \cap C_2| - |C_2 \cap C_3| - |C_1 \cap C_3| + |C_1 \cap C_2 \cap C_3|$$

Let us calculate the cardinalities of each of the intersections:

• $|C_1|$, $|C_2|$, $|C_3|$

The cardinality of each of these is equal to $\binom{50}{9}$ since we just choose 9 people from the 50 people that aren't a part of the missing year.

• $|C_1 \cap C_2|, |C_2 \cap C_3|, |C_1 \cap C_3|$

The intersection of two of these sets is the set containing all committees that are missing two class years. The cardinality of each of these is equal to $\binom{25}{9}$ since we just choose 9 people from the 25 people of the remaining year.

• $|C_1 \cap C_2 \cap C_3|$

The intersection of three of these sets is the set containing all committees that are missing three class years. Clearly this is equal to 0 since we can't form a committee with 0 people.

Applying the inclusion-exclusion principle, we get:

$$|C_1 \cup C_2 \cup C_3| = 3 {50 \choose 9} - {3 \choose 2} {25 \choose 9} + 0$$

Thus, there are

$$\boxed{ \begin{pmatrix} 75 \\ 9 \end{pmatrix} - \left(3 \begin{pmatrix} 50 \\ 9 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 25 \\ 9 \end{pmatrix} \right) }$$

committees that the professor can form.

Permutations of Multisets

Let S be a multiset that consists of n objects of which

 n_1 are of type 1 and indistinguishable from each other.

 n_2 are of type 2 and indistinguishable from each other.

:

 n_k are of type k and indistinguishable from each other.

and suppose $n_1 + n_2 + \ldots + n_k = n$. What is the number of distinct permutations of the n objects in S?

A permutation of S can be constructed by the following k-step process:

Step 1. Choose n_1 places out of n places for type 1 objects.

Step 2. Choose n_2 places out of the remaining $n - n_1$ places for type 2 objects.

.

Step k. Choose n_k places of the remaining unused places for type k objects.

By the multiplication rule, the total number of permutations of n objects in S is

$$\binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n-n_1-n_2-\cdots-n_{k-1}}{n_k}$$

$$= \frac{n!}{n_1!(n-n_1)!} \cdot \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \cdots \frac{n-n_1-n_2-\cdots-n_{k-1}}{n_k!(n-n_1-\cdots-n_k)!}$$

$$= \frac{n!}{n_1!n_2!\cdots n_k!}$$

Example. How many permutations are there of the word MISSISSIPPI?

Solution. We want to find the number of permutations of the multiset $\{1 \cdot M, 4 \cdot I, 4 \cdot S, 2 \cdot P\}$. Thus, $n = 11, n_1 = 1, n_2 = 4, n_3 = 4, n_4 = 2$. Then number of permutations is given by

$$\frac{n!}{n_1!n_2!n_3!n_4!} = \frac{11!}{1!4!4!2!}$$