CMSC 250: Discrete Structures

Summer 2017

Lecture 11 - Outline
 June 16, 2017

Principle of Inclusion-Exclusion

Problem: How many strings are there of four lower-case letters that have the letter x in them?

Solution: Let S be the set of all possible four-letter strings that can be constructed using lowercase letters. The set S can be partitioned into two sets S_{1} and S_{2} where S_{1} is the set of all strings that contain at least one x and S_{2} is the set of strings that do not contain x. Hence we have

$$
\begin{equation*}
|S|=\left|S_{1}\right|+\left|S_{2}\right| \tag{1}
\end{equation*}
$$

Let us determine $|S|$, and let the outcome in S be a 4 -tuple that directly represents the string. We can construct an outcome in the following way:

Step 1. Choose the 1st letter - 26 ways
Step 2. Choose the 2nd letter - 26 ways
Step 3. Choose the 3rd letter - 26 ways
Step 4. Choose the 4th letter - 26 ways
By the multiplication rule, $|S|=26^{4}$.
Let us determine $\left|S_{2}\right|$, and let the outcome in S_{2} be a 4 -tuple that directly represents the string. We can construct an outcome in the following way:

Step 1. Choose the 1st letter - 25 ways (any letter but x)
Step 2. Choose the 2nd letter - 25 ways
Step 3. Choose the 3rd letter - 25 ways
Step 4. Choose the 4th letter - 25 ways
By the multiplication rule, $\left|S_{2}\right|=25^{4}$.
Substituting these values in equation (1) we get

$$
\left|S_{1}\right|=26^{4}-25^{4}=66351
$$

Incorrect Solution. Here is an incorrect solution. Can you figure out what is wrong?
A four letter string that contains x can be constructed in two steps as follows.

- Choose a letter to be $\mathrm{x}-4$ ways
- Choose the other 3 letters - 26^{3} ways

By the multiplcation rule, there are $4 \cdot 26^{3}=70304$ four letter strings that contain x .

Problem:

A certain course consists of 75 people, with an equal number of people from each class (25 freshman, 25 sophomores, and 25 juniors). The professor wants to form a committee of 9 people such that the committee contains at least one person from each year. How many ways can the professor form such a committee?

Solution:

We solve the problem by using complementary counting. First, we find the total number of ways to form committees with no restriction. This is simply choosing 9 people from 75 , or $\binom{75}{9}$.
Next, we need to subtract the number of committees that are missing at least one of the years. We use the following sets:
C_{1} : Committees that don't have any freshman
C_{2} : Committees that don't have any sophomores
C_{3} : Committees that don't have any juniors
Note that $C_{1} \cup C_{2} \cup C_{3}$ contains all of the committees that are missing at least one of the class years. In order to determine $\left|C_{1} \cup C_{2} \cup C_{3}\right|$, we can use PIE.

$$
\left|C_{1} \cup C_{2} \cup C_{3}\right|=\left|C_{1}\right|+\left|C_{2}\right|+\left|C_{3}\right|-\left|C_{1} \cap C_{2}\right|-\left|C_{2} \cap C_{3}\right|-\left|C_{1} \cap C_{3}\right|+\left|C_{1} \cap C_{2} \cap C_{3}\right|
$$

Let us calculate the cardinalities of each of the intersections:

- $\left|C_{1}\right|,\left|C_{2}\right|,\left|C_{3}\right|$

The cardinality of each of these is equal to $\binom{50}{9}$ since we just choose 9 people from the 50 people that aren't a part of the missing year.

- $\left|C_{1} \cap C_{2}\right|,\left|C_{2} \cap C_{3}\right|,\left|C_{1} \cap C_{3}\right|$

The intersection of two of these sets is the set containing all committees that are missing two class years. The cardinality of each of these is equal to $\binom{(25}{9}$ since we just choose 9 people from the 25 people of the remaining year.

- $\left|C_{1} \cap C_{2} \cap C_{3}\right|$

The intersection of three of these sets is the set containing all committees that are missing three class years. Clearly this is equal to 0 since we can't form a committee with 0 people.

Applying the inclusion-exclusion principle, we get:

$$
\left|C_{1} \cup C_{2} \cup C_{3}\right|=3\binom{50}{9}-\binom{3}{2}\binom{25}{9}+0
$$

Thus, there are

$$
\binom{75}{9}-\left(3\binom{50}{9}-\binom{3}{2}\binom{25}{9}\right)
$$

committees that the professor can form.

Permutations of Multisets

Let S be a multiset that consists of n objects of which
n_{1} are of type 1 and indistinguishable from each other.
n_{2} are of type 2 and indistinguishable from each other.
\vdots
n_{k} are of type k and indistinguishable from each other.
and suppose $n_{1}+n_{2}+\ldots+n_{k}=n$. What is the number of distinct permutations of the n objects in $S ?$

A permutation of S can be constructed by the following k-step process:
Step 1. Choose n_{1} places out of n places for type 1 objects.
Step 2. Choose n_{2} places out of the remaining $n-n_{1}$ places for type 2 objects.

Step k. Choose n_{k} places of the remaining unused places for type k objects.
By the multiplication rule, the total number of permutations of n objects in S is

$$
\begin{aligned}
& \binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}} \\
= & \frac{n!}{n_{1}!\left(n-n_{1}\right)!} \cdot \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \cdots \frac{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}!\left(n-n_{1}-\cdots-n_{k}\right)!} \\
= & \frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
\end{aligned}
$$

Example. How many permutations are there of the word MISSISSIPPI?

Solution. We want to find the number of permutations of the multiset $\{1 \cdot M, 4 \cdot I, 4 \cdot S, 2 \cdot P\}$. Thus, $n=11, n_{1}=1, n_{2}=4, n_{3}=4, n_{4}=2$. Then number of permutations is given by

$$
\frac{n!}{n_{1}!n_{2}!n_{3}!n_{4}!}=\frac{11!}{1!4!4!2!}
$$

