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Problem:

Prove that the sum of the first n positive integers is n(n+1)
2 . In other words, prove that:

n∑
i=1

i =
n(n + 1)

2

Solution:

This seems hard to prove with the tools we have so far. Certainly, a young Gauss would tell you

that it is trivial to just rearrange and group terms in order to get to the answer. But this approach

seems hard to generalize beyond this specific sum here.

Let us consider if there is another way to go about proving this. Let us rewrite this using quantifier

notation:

∀k ∈ Z+,
k∑

i=1

i =
k(k + 1)

2

If we let the predicate P (k) be
∑k

i=1 i = k(k+1)
2 , then we can rewrite this as:

∀n ∈ Z+, P (n)

In other words, in order to show that the claim is true, we must show that P (1) is true, P (2) is

true, P (3) is true etc.

First we try to show P (1) is true. For reasons that will become obvious later, we shall call this

case where n = 1 the Base Case (BC). For P (1) we have that LHS =
∑1

i=1 i = 1, while

RHS = 1(1+1)
2 = 1. So P (1) is true.

For P (2) we have that LHS =
∑2

i=1 i = 1+2 = 3, while RHS = 2(2+1)
2 = 3. So P (2) is true.

For P (3) we have that LHS =
∑3

i=1 i = 1 + 2 + 3 = 6, while RHS = 3(3+1)
2 = 6. So P (3) is

true.

For P (4) we similarly want to show that LHS = RHS, but it is starting to get cumbersome to

write out all the sums on the LHS. Imagine doing this for P (102) – what a pain that would be.

What else can we do?

Well, we know that P (3) is true. In order words, we know that
∑3

i=1 i = 3(3+1)
2 . Let’s try to use

that:

LHS =
4∑

i=1

i =

(
3∑

i=1

i

)
+ 4 =

3(3 + 1)

2
+ 4 = 6 + 4 = 10
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Since RHS = 4(4+1)
2 = 10, we have P (4) as well.

Let’s try this for P (5) as well. Now we know that P (4) is true. So,

LHS =
5∑

i=1

i =

(
4∑

i=1

i

)
+ 5 =

4(4 + 1)

2
+ 5 = 10 + 5 = 15

Since RHS = 5(5+1)
2 = 15, we have P (5).

Cool! It seems that for any value of n, as long as I know that it is true for P (n − 1), I can easily

show that P (n) is true.

Let us check this for n = k + 1. In other words, we want to show that P (k + 1) is true, given that

we know that P (k) is true.

Let us examine the LHS for P (k + 1):

LHS =
k+1∑
i=1

i =

(
k∑

i=1

i

)
+ (k + 1)

Since we assume that P (k) is true, we know that:

k∑
i=1

i =
k(k + 1)

2

Plugging this back in:

LHS =

(
k∑

i=1

i

)
+ (k + 1) =

k(k + 1)

2
+ (k + 1) =

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2

But this is precisely the RHS, and we are done. So, we have shown that P (k + 1) is true, for any

arbitrary k ∈ Z+.

Note that since k is arbitrary, we have effectively shown that the claim is true for all n ∈ Z+.

Induction

If we wish to prove a claim of the form:

∀n ∈ Z, n ≥ BC,P (n)

, where BC is some lower bound on the value of n,

then we can equivalently show:

P (BC) ∧ (∀k ∈ Z, k ≥ BC,P (k) =⇒ P (k + 1))
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In other words, we just need to show that P (BC) is true, and that for any k ∈ Z, k ≥ BC, assuming

that P (k) is true allows us to show that P (k + 1) is true.

We use a structure for induction proofs to help ensure that you include all of the necessary steps.

Let us see how the proof we saw earlier would work in this format.

We want to prove that ∀n ∈ Z+,
∑n

i=1 i = n(n+1)
2 . Let the predicate P (n) be

∑n
i=1 i = n(n+1)

2 .

Base Case: Since we are proving on the set of positive integers, our base case is n = 1. LHS = 1,

RHS = 1(1+1)
2 = 1, so we are done.

Induction Hypothesis: Assume that, for some k ∈ Z+, that P (k) is true. In other words,

assume that:
k∑

i=1

i =
k(k + 1)

2

Induction Step: We want to show that P (k + 1) is true. In other words, we want to prove

that:
k+1∑
i=1

i =
(k + 1)(k + 2)

2

Let us work with the LHS. Remember, as with any proof, we should never assume that P (k + 1)

is true to begin with.

LHS =

k+1∑
i=1

i

=
k∑

i=1

i + (k + 1)

We know from our Induction Hypothesis that
∑k

i=1 i = k(k+1)
2 , so:

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

= RHS

Note that this is precisely what we were asked to show for P (k+1). This concludes the proof.

Problem:
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Show that for all integers n ≥ 0, if r 6= 1,

n∑
i=0

ari =
a(rn+1 − 1)

r − 1

Solution:

Let r be any real number that is not equal to 1. We want to prove that ∀ integers n, P (n), where

P (n) is given by
n∑

i=0

ari =
a(rn+1 − 1)

r − 1

Base Case: We want to show that P (0) is true.

0∑
i=0

ari = a =
a(r − 1)

r − 1

Induction Hypothesis: Assume that P (k) is true for some k ≥ 0.

Induction Step: We want to show that P (k + 1) is true, i.e., we want to prove that

k+1∑
i=0

ari =
a(rk+2 − 1)

r − 1

We can do this as follows.

L.H.S. =
k+1∑
i=0

ari

=
k∑

i=0

ari + ark+1

Applying the induction hypothesis:

=
ark+1 − a

r − 1
+ ark+1

=
a(rk+1 − 1)

r − 1
+

ark+1(r − 1)

r − 1

=
a

r − 1

(
rk+1(1 + r − 1)− 1

)
=

a

r − 1

(
rk+2 − 1

)
=

a(rk+2 − 1)

r − 1

Problem:
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Prove that ∀ non-negative integers n,

n∑
i=0

2i = 2n+1 − 1

Solution:

By setting a = 1, r = 2 in the result of the previous problem, the claim follows.

Problem:

Prove that ∀n ∈ N, n > 1→ n! < nn.

Solution:

Below is a simple direct proof for this inequality.

n! = 1× 2× 3× · · · × n

< n× n× n× · · · × n

= nn

We now give a proof using induction. Let P (n) denote the following predicate:

n! < nn

Induction Hypothesis: Assume that P (k) is true for some k > 1.

Base Case: We want to prove P (2). P (2) is the proposition that 2! < 22, or 2 < 4, which is true.

Induction Step: We want to prove P (k+ 1), i.e., we want to prove that (k+ 1)! < (k+ 1)k+1.

L.H.S. = (k + 1)!

= k!× (k + 1)

< kk × (k + 1) (using induction hypothesis)

< (k + 1)k × (k + 1) (since k > 1)

= (k + 1)k+1


