
CMSC 250: Discrete Structures
Summer 2017

Lecture 14 - Outline
June 23, 2017

Problem:

Prove that the sum of the first n positive integers is
n(n+1)

2 . In other words, prove that:

n∑
i=1

i =
n(n + 1)

2

Solution:

This seems hard to prove with the tools we have so far.

Certainly, a young Gauss would tell you that it is triv-

ial to just rearrange and group terms in order to get to

the answer. But this approach seems hard to generalize

beyond this specific sum here.

Let us consider if there is another way to go about proving
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this. Let us rewrite this using quantifier notation:

∀k ∈ Z+,
k∑

i=1

i =
k(k + 1)

2

If we let the predicate P (k) be
∑k

i=1 i = k(k+1)
2 , then we

can rewrite this as:

∀n ∈ Z+, P (n)

In other words, in order to show that the claim is true,

we must show that P (1) is true, P (2) is true, P (3) is true

etc.

First we try to show P (1) is true. For reasons that

will become obvious later, we shall call this case where

n = 1 the Base Case (BC). For P (1) we have that

LHS =
∑1

i=1 i = 1, while RHS = 1(1+1)
2 = 1. So P (1)

is true.

For P (2) we have that LHS =
∑2

i=1 i = 1 + 2 = 3, while

RHS = 2(2+1)
2 = 3. So P (2) is true.

For P (3) we have that LHS =
∑3

i=1 i = 1 + 2 + 3 = 6,

while RHS = 3(3+1)
2 = 6. So P (3) is true.



Lecture 14 CMSC 250 3

For P (4) we similarly want to show that LHS = RHS,

but it is starting to get cumbersome to write out all the

sums on the LHS. Imagine doing this for P (102) – what

a pain that would be. What else can we do?

Well, we know that P (3) is true. In order words, we know

that
∑3

i=1 i = 3(3+1)
2 . Let’s try to use that:

LHS =

4∑
i=1

i =

(
3∑

i=1

i

)
+ 4 =

3(3 + 1)

2
+ 4 = 6 + 4 = 10

Since RHS = 4(4+1)
2 = 10, we have P (4) as well.

Let’s try this for P (5) as well. Now we know that P (4)

is true. So,

LHS =
5∑

i=1

i =

(
4∑

i=1

i

)
+5 =

4(4 + 1)

2
+5 = 10+5 = 15

Since RHS = 5(5+1)
2 = 15, we have P (5).

Cool! It seems that for any value of n, as long as I know

that it is true for P (n − 1), I can easily show that P (n)

is true.
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Let us check this for n = k + 1. In other words, we want

to show that P (k + 1) is true, given that we know that

P (k) is true.

Let us examine the LHS for P (k + 1):

LHS =

k+1∑
i=1

i =

(
k∑

i=1

i

)
+ (k + 1)

Since we assume that P (k) is true, we know that:

k∑
i=1

i =
k(k + 1)

2

Plugging this back in:

LHS =

(
k∑

i=1

i

)
+ (k + 1) =

k(k + 1)

2
+ (k + 1) =

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2

But this is precisely the RHS, and we are done. So,

we have shown that P (k + 1) is true, for any arbitrary

k ∈ Z+.

Note that since k is arbitrary, we have effectively shown

that the claim is true for all n ∈ Z+.
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Induction

If we wish to prove a claim of the form:

∀n ∈ Z, n ≥ BC,P (n)

, where BC is some lower bound on the value of n,

then we can equivalently show:

P (BC) ∧ (∀k ∈ Z, k ≥ BC,P (k) =⇒ P (k + 1))

In other words, we just need to show that P (BC) is true,

and that for any k ∈ Z, k ≥ BC, assuming that P (k) is

true allows us to show that P (k + 1) is true.

We use a structure for induction proofs to help ensure

that you include all of the necessary steps. Let us see how

the proof we saw earlier would work in this format.

We want to prove that ∀n ∈ Z+,
∑n

i=1 i = n(n+1)
2 . Let

the predicate P (n) be
∑n

i=1 i = n(n+1)
2 .
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Base Case: Since we are proving on the set of positive

integers, our base case is n = 1. LHS = 1, RHS =
1(1+1)

2 = 1, so we are done.

Induction Hypothesis: Assume that, for some k ∈
Z+, that P (k) is true. In other words, assume that:

k∑
i=1

i =
k(k + 1)

2

Induction Step: We want to show that P (k + 1) is

true. In other words, we want to prove that:

k+1∑
i=1

i =
(k + 1)(k + 2)

2

Let us work with the LHS. Remember, as with any proof,

we should never assume that P (k + 1) is true to begin

with.
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LHS =
k+1∑
i=1

i

=
k∑

i=1

i + (k + 1)

We know from our Induction Hypothesis that
∑k

i=1 i =
k(k+1)

2 , so:

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

= RHS

Note that this is precisely what we were asked to show

for P (k + 1). This concludes the proof.

Problem:
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Show that for all integers n ≥ 0, if r 6= 1,

n∑
i=0

ari =
a(rn+1 − 1)

r − 1

Solution:

Let r be any real number that is not equal to 1. We want

to prove that ∀ integers n, P (n), where P (n) is given

by
n∑

i=0

ari =
a(rn+1 − 1)

r − 1

Base Case: We want to show that P (0) is true.

0∑
i=0

ari = a =
a(r − 1)

r − 1

Induction Hypothesis: Assume that P (k) is true for some

k ≥ 0.

Induction Step: We want to show that P (k + 1) is true,

i.e., we want to prove that

k+1∑
i=0

ari =
a(rk+2 − 1)

r − 1



Lecture 14 CMSC 250 9

We can do this as follows.

L.H.S. =
k+1∑
i=0

ari

=

k∑
i=0

ari + ark+1

Applying the induction hypothesis:

=
ark+1 − a

r − 1
+ ark+1

=
a(rk+1 − 1)

r − 1
+

ark+1(r − 1)

r − 1

=
a

r − 1

(
rk+1(1 + r − 1)− 1

)
=

a

r − 1

(
rk+2 − 1

)
=

a(rk+2 − 1)

r − 1

Problem:
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Prove that ∀ non-negative integers n,

n∑
i=0

2i = 2n+1 − 1

Solution:

By setting a = 1, r = 2 in the result of the previous

problem, the claim follows.

Problem:

Prove that ∀n ∈ N, n > 1→ n! < nn.

Solution:

Below is a simple direct proof for this inequality.

n! = 1× 2× 3× · · · × n

< n× n× n× · · · × n

= nn

We now give a proof using induction. Let P (n) denote

the following predicate:

n! < nn
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Induction Hypothesis: Assume that P (k) is true for some

k > 1.

Base Case: We want to prove P (2). P (2) is the proposi-

tion that 2! < 22, or 2 < 4, which is true.

Induction Step: We want to prove P (k+ 1), i.e., we want

to prove that (k + 1)! < (k + 1)k+1.

L.H.S. = (k + 1)!

= k!× (k + 1)

< kk × (k + 1) (using induction hypothesis)

< (k + 1)k × (k + 1) (since k > 1)

= (k + 1)k+1


