CMSC 250: Discrete Structures

Summer 2017

Lecture 15 - Outline

June 26, 2017

Problem:

Let A_1, A_2, \ldots, A_n be sets (where $n \geq 2$). Suppose for any two sets A_i and A_j either $A_i \subseteq A_j$ or $A_j \subseteq A_i$. Prove by induction that one of these n sets is a subset of all of them.

Solution:

We will prove the claim using induction on n.

Base Case: n=2. We have two sets A_1, A_2 and we know that $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$. Without loss of generality assume that $A_1 \subseteq A_2$. Then A_1 is a subset of A_1 and is also a subset of A_2 , so the claim holds when n=2.

Induction Hypothesis: Assume that the claim is true when n = k, for some $k \geq 2$. In other words, assume that if we have sets A_1, A_2, \ldots, A_k , where for any two sets A_i and A_j , either $A_i \subseteq A_j$ or $A_j \subseteq A_i$ then one of the k sets is a subset of all of the k sets.

Induction Step: We want to prove the claim when n = k + 1. That is, we are given a set $S = \{A_1, A_2, \dots, A_{k+1}\}$ of with the property that for every pair of sets $A_i \in S$ and $A_j \in S$, either $A_i \subseteq A_j$ or $A_j \subseteq A_i$. We want to show that there is a set in S that is a subset of all k + 1 sets in S. Let $S' = S \setminus \{A_{k+1}\}$. By induction hypothesis, there is a set $A_p \in S'$ that is a subset of all sets in S'. We now consider the following two cases.

Case 1 : $A_p \subseteq A_{k+1}$. Then it follows that A_p is a subset of all sets in S.

Case 2: $A_{k+1} \subseteq A_p$. Since A_p is a subset of all sets in S' and $A_{k+1} \subseteq A_p$, it follows that A_{k+1} is a subset of all sets in S.

Problem:

Recall that for any set A, 2^A denotes the power set of A.Let $S = \{x_1, x_2, \ldots, x_n\}$. Prove using induction that for all positive integers n, if S is an arbitrary set such that |S| = n, then $|2^A| = 2^n$.

Solution:

We will prove the claim using induction on n.

Base Case: n = 1. Let $S = \{x_1\}$ be an arbitrary set of size 1. Note that $2^S = \{\emptyset, S\}$. So $|2^S| = 2 = 2^1$. Thus the claim is true when n = 1.

Induction Hypothesis: Assume that the claim is true when n = k, for some $k \ge 1$. In other words, assume that if $S = \{x_1, x_2, \dots, x_k\}$, then $|2^S| = 2^k$.

Induction Step: We want to prove that the claim is true when n = k + 1. Let S be an arbitrary set such that |S| = k + 1. Let $S = \{x_1, x_2, \dots, x_k, x_{k+1}\}$. We want to show that $|2^S| = 2^{k+1}$.

Note that 2^S can be partitioned into S_1 and S_2 , where $S_1 \subset 2^S$ contains subsets of S that does not contain x_{k+1} , and $S_2 \subset 2^S$ contains subsets of S that do contain x_{k+1} . By the addition rule, we have that

$$|2^S| = |S_1| + |S_2|$$

Let us first determine the cardinality of $|S_1|$. Let $S' = \{x_1, x_2, \dots, x_k\}$. Note that $S_1 = 2^{S'}$, and that |S'| = k. By the induction hypothesis, we have that $|2^{S'}| = 2^k$.

Let us now determine the cardinality of $|S_2|$. Observe that each set in S_2 is of the form $\{x_{k+1}\} \cup X$, where X is a subset of S'. More formally, we can establish a bijection between S_2 and S_1 . Hence $|S_2| = |S_1|$. Plugging in the values for $|S_1|$ and $|S_2|$, we get

$$|2^S| = 2^k + 2^k = 2^{k+1}$$

Problem: Find the mistake in the attempted proof given below of the following ridiculous claim: "All horses are of the same color".

Let P(n) be the property that n horses are of the same color.

Base Case: P(1) is clearly true since there is only one horse.

Induction Hypothesis: Assume that P(k) is true for some k > 0.

Induction Step:

We want to prove that P(k+1) is true. Consider any set of k+1 horses and number them 1, 2, ..., k+1. By induction hypothesis, the first k horses are of the same color. Also, the last k horses are of the same color, again by induction hypothesis. Since the set of first k horses and the set of last k horses overlap, all k+1 horses must be of the same color. Thus, P(k+1) is true. This completes the proof.

Solution: The argument in the inductive step that the set of first k horses and the set of last k horses overlap is not true for k = 1. When k = 1 and hence k + 1 = 2, the set of first k horses and the set of last k horses are disjoint.