CMSC 250: Discrete Structures

Summer 2017

Lecture 15 - Outline
 June 26, 2017

Problem:

Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets (where $n \geq 2$). Suppose for any two sets A_{i} and A_{j} either $A_{i} \subseteq A_{j}$ or $A_{j} \subseteq A_{i}$. Prove by induction that one of these n sets is a subset of all of them.

Solution:

We will prove the claim using induction on n.
Base Case: $n=2$. We have two sets A_{1}, A_{2} and we know that $A_{1} \subseteq A_{2}$ or $A_{2} \subseteq A_{1}$. Without loss of generality assume that $A_{1} \subseteq A_{2}$. Then A_{1} is a subset of A_{1} and is also a subset of A_{2}, so the claim holds when $n=2$.

Induction Hypothesis: Assume that the claim is true when $n=k$, for some $k \geq 2$. In other words, assume that if we have sets $A_{1}, A_{2}, \ldots, A_{k}$, where for any two sets A_{i} and A_{j}, either $A_{i} \subseteq A_{j}$ or $A_{j} \subseteq A_{i}$ then one of the k sets is a subset of all of the k sets.

Induction Step: We want to prove the claim when $n=k+1$. That is, we are given a set $S=\left\{A_{1}, A_{2}, \ldots, A_{k+1}\right\}$ of with the property that for every pair of sets $A_{i} \in S$ and $A_{j} \in S$, either $A_{i} \subseteq A_{j}$ or $A_{j} \subseteq A_{i}$. We want to show that there is a set in S that is a subset of all $k+1$ sets in S. Let $S^{\prime}=S \backslash\left\{A_{k+1}\right\}$. By induction hypothesis, there is a set $A_{p} \in S^{\prime}$ that is a subset of all sets in S^{\prime}. We now consider the following two cases.

Case 1: $A_{p} \subseteq A_{k+1}$. Then it follows that A_{p} is a subset of all sets in S.
Case 2: $A_{k+1} \subseteq A_{p}$. Since A_{p} is a subset of all sets in S^{\prime} and $A_{k+1} \subseteq A_{p}$, it follows that A_{k+1} is a subset of all sets in S.

Problem:

Recall that for any set $A, 2^{A}$ denotes the power set of A.Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Prove using induction that for all positive integers n, if S is an arbitrary set such that $|S|=n$, then $\left|2^{A}\right|=$ 2^{n}.

Solution:

We will prove the claim using induction on n.
Base Case: $n=1$. Let $S=\left\{x_{1}\right\}$ be an arbitrary set of size 1. Note that $2^{S}=\{\varnothing, S\}$. So $\left|2^{S}\right|=2=2^{1}$. Thus the claim is true when $n=1$.

Induction Hypothesis: Assume that the claim is true when $n=k$, for some $k \geq 1$. In other words, assume that if $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then $\left|2^{S}\right|=2^{k}$.

Induction Step: We want to prove that the claim is true when $n=k+1$. Let S be an arbitrary set such that $|S|=k+1$. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}\right\}$. We want to show that $\left|2^{S}\right|=2^{k+1}$.
Note that 2^{S} can be partitioned into S_{1} and S_{2}, where $S_{1} \subset 2^{S}$ contains subsets of S that does not contain x_{k+1}, and $S_{2} \subset 2^{S}$ contains subsets of S that do contain x_{k+1}. By the addition rule, we have that

$$
\left|2^{S}\right|=\left|S_{1}\right|+\left|S_{2}\right|
$$

Let us first determine the cardinality of $\left|S_{1}\right|$. Let $S^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Note that $S_{1}=2^{S^{\prime}}$, and that $\left|S^{\prime}\right|=k$. By the induction hypothesis, we have that $\left|2^{S^{\prime}}\right|=2^{k}$.

Let us now determine the cardinality of $\left|S_{2}\right|$. Observe that each set in S_{2} is of the form $\left\{x_{k+1}\right\} \cup X$, where X is a subset of S^{\prime}. More formally, we can establish a bijection between S_{2} and S_{1}. Hence $\left|S_{2}\right|=\left|S_{1}\right|$. Plugging in the values for $\left|S_{1}\right|$ and $\left|S_{2}\right|$, we get

$$
\left|2^{S}\right|=2^{k}+2^{k}=2^{k+1}
$$

Problem: Find the mistake in the attempted proof given below of the following ridiculous claim: "All horses are of the same color".

Let $P(n)$ be the property that n horses are of the same color.
Base Case: $\quad P(1)$ is clearly true since there is only one horse.
Induction Hypothesis: Assume that $P(k)$ is true for some $k>0$.

Induction Step:

We want to prove that $P(k+1)$ is true. Consider any set of $k+1$ horses and number them $1,2, \ldots, k+1$. By induction hypothesis, the first k horses are of the same color. Also, the last k horses are of the same color, again by induction hypothesis. Since the set of first k horses and the set of last k horses overlap, all $k+1$ horses must be of the same color. Thus, $P(k+1)$ is true. This completes the proof.

Solution: The argument in the inductive step that the set of first k horses and the set of last k horses overlap is not true for $k=1$. When $k=1$ and hence $k+1=2$, the set of first k horses and the set of last k horses are disjoint.

