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Strong Induction.

If we are trying to prove a claim:

∀n ∈ Z, n ≥ BC,P (n)

we can equivalently prove:

P (BC) ∧ (∀k ∈ Z, k ≥ BC, (P (BC) ∧ P (BC + 1) ∧ P (BC + 2) ∧ · · · ∧ P (k)) =⇒ P (k + 1))

Note that the only difference between “normal” induction and “strong” induction is what we assume

in the Induction Hypothesis. In normal induction, we assume that P (k) is true, and go on to show

that P (k + 1) is true. In strong induction, we assume that P (j) is true, for any j between the base

case and k, and go on to show that P (k + 1) is true.

The rest of the induction step proceeds in a similar fashion.

Problem: Suppose we have the following sequence:

a1 = 1 a2 = 3 ai = ai−2 + 2ai−1, i ∈ Z, i ≥ 3

Use strong induction to prove that for any n ∈ Z+, an is odd.

Solution: Define P (k) to be the claim that ak is odd.

Base Cases: When n = 1, a1 = 1, which is odd.

When n = 2, a2 = 3, which is also odd.

We need 2 base cases, the Induction Step does not prove that claim for P (2).

Induction Hypothesis: Assume P (j) is true, for 1 ≤ j ≤ k, for some k ∈ Z+.

Induction Step: We want to show that ak+1 = 2` + 1, for some ` ∈ Z.

ak+1 = ak−1 + 2ak

By the Induction Hypothesis, ak−1 and ak are both odd. Let ak−1 = 2x + 1 and ak = 2y + 1, for

some integers x and y.
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ak+1 = (2x + 1) + 2(2y + 1)

ak+1 = 2x + 1 + 4y + 2 = 2(x + 2y + 1) + 1

Thus, ak+1 is odd.

Problem: Prove that, for any positive integer n, if x1, x2, . . . , xn are n distinct real numbers,

then no matter how the parenthesis are inserted into their product, the number of multiplications

used to compute the product is n− 1.

Solution: Let P (n) be the predicate that “If x1, x2, . . . , xn are n distinct real numbers, then no

matter how the parentheses are inserted into their product, the number of multiplications used to

compute the product is n− 1”.

Base Case: P (1) is true, since x1 is computed using 0 multiplications.

Induction Hypothesis: Assume that P (j) is true for all j such that 1 ≤ j ≤ k, for some

k ∈ Z+.

Induction Step: We want to prove P (k + 1). Consider the product of k + 1 distinct factors,

x1, x2, . . . , xk+1. When parentheses are inserted in order to compute the product of factors, some

multiplication must be the final one. Consider the two terms, of this final multiplication. Each one

is a product of at most k factors. Suppose the first and the second term in the final multiplication

contain fk and sk factors. Clearly, 1 ≤ fk, sk ≤ k.

Thus, by induction hypothesis, the number of multiplications to obtain the first term of the final

multiplication is fk − 1 and the number of multiplications to obtain the second term of the final

multiplication is sk − 1. It follows that the number of multiplications to compute the product of

x1, x2, . . . , xk, xk+1 is

(fk − 1) + (sk − 1) + 1 = fk + sk − 1 = k + 1− 1 = k

Introduction to Probability

Probability theory has many applications in engineering, medicine, etc. It has also found many

useful applications in computer science, such as cryptography, networking, game theory etc. Many

algorithms are randomized and we need probability theory to analyze them. In this course, our

goal is to understand how to describe uncertainty using probabilistic arguments. To do this we first

have to define a probabilistic model.

A probabilistic model is a mathematical description of a random process or an experiment. In a

random process exactly one outcome from a set of outcomes is sure to occur but no outcome can

be predicted with certainty. For example, tossing a coin is an experiment. Below are definitions of

entities associated with the probabilistic model.
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• The outcome/sample space of a random process or experiment is the set of all possible out-

comes. The outcome/sample space is often denoted by Ω. Since we are going to study discrete

probability Ω will be finite or countably infinite (such as integers and not real numbers).

• The probability function/distribution is a function Pr : Ω → [0, 1] that assigns each

outcome ω ∈ Ω a probability value that is a real number from 0 to 1.

The probability function must satisfy the following requirements:

– 0 ≤ Pr[ω] ≤ 1

–
∑

ω∈Ω Pr[ω] = 1

• The probability space is the combination of an outcome space and a probability distribu-

tion.

In an experiment we are usually interested in the probability that an event occurs. An event is a

set containing of the outcomes of interest. For example, when tossing a coin we may be interested

in knowing the probability that the result is heads. Below we define formally what an event is and

what does it mean to calculate the probability of an event.

• A subset of the sample space is called an event.

• For any event, A ⊆ Ω, the probability of A is defined as

Pr[A] =
∑
ω∈A

Pr[ω]

For any event A, we also have a concept of a complementary event, denoted A or Ac. The comple-

ment event contains all of the outcomes that do not belong to the event A. Formally, we can say

that A := Ω \A.

Note that the probability of any complement event has the following relationship with the event:

Pr[A] = 1− Pr[A]

This follows immediately from the following equality:

Pr[A] + Pr[A] = 1

We know that the above equality is true, since any outcome must either be in A or A, and the sum

of the probabilities over all outcomes must equal 1.

Let us see an example probabilistic game so we can make the above definitions/concepts con-

crete.

Example:

Let us consider the probabilistic game that is the roll of a fair six-sided dice.

Note that Ω = {1, 2, 3, 4, 5, 6}, and the probability function Pr = {(1, 1
6), (2, 1

6), (3, 1
6), (4, 1

6), (5, 1
6), (6, 1

6)}.
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We can check that the sum of the probabilities of all outcomes is 1.∑
ω∈Ω

[ω] = Pr[1] + Pr[2] + · · ·+ Pr[6] = 6× 1

6
= 1

By inspection, we can see that the probability of any outcome is between 0 and 1, as required.

Let us consider A, where A is the event that we roll an even number. Note that A = {2, 4, 6}. We

can also compute Pr[A]:

Pr[A] =
∑
ω∈A

Pr[ω] = Pr[2] + Pr[4] + Pr[6] = 3× 1

6
=

1

2

Let us consider A. In English, we would say that the complement event is where we roll an odd

number. Clearly, A = {1, 3, 5}.

We can compute A in two ways. First, using the definition of the probability of any event:

Pr[A] =
∑
ω∈A

Pr[ω] = Pr[1] + Pr[3] + Pr[5] = 3× 1

6
=

1

2

Second, using the relationship between the probability of an event and its complement:

Pr[A] = 1− Pr[A] = 1− 1

2
=

1

2

Uniform Probability Space

One of the most important and common probability spaces that we encounter is called the uniform

probability space. A probability space or probability function is called uniform if each outcome

in the space is assigned an equal probability.

Suppose we have an outcome space Ω and a uniform probability function Pr. For any ω ∈ Ω, what

is Pr[ω]?

We can solve this from our definitions above. We know that:∑
ω∈Ω

Pr[ω] = 1

Let ∀ω ∈ Ω,Pr[ω] = x, for some x ∈ [0, 1]. So we have:∑
ω∈Ω

Pr[ω] = 1∑
ω∈Ω

x = 1

|Ω| · x = 1

x =
1

|Ω|
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Hence, we have that ∀ω ∈ Ω,Pr[ω] =
1

|Ω|
.

Suppose we have an event A in a uniform probability space. What is Pr[A]? Again, we can work

this out from the definitions above.

Pr[A] =
∑
ω∈A

Pr[ω] =
∑
ω∈A

1

|Ω|
=
|A|
|Ω|

Hence, we have that the probability for any event A in a uniform probability space is:

Pr[A] =
|A|
|Ω|

Problem:

Consider a probabilistic game that is 5 fair coin flips.

(a) What is the probability that we get exactly 3 heads?

(b) What is the probability that we get at least 1 head?

Solution: Let us consider some possible outcomes for this game. One possible outcome would

be HHTHH, which would be getting heads on flip 1, 2, 4, 5, and getting tails on flip 3. Another

possible outcome would be TTHHH, which would be getting heads on flip 3, 4, 5, and getting

tails on flip 1, 2.

Note that each of these outcomes should occur with the same probability, since we are flipping fair

coins. Hence, we have a uniform probability space.

(a) Let A be the event where we get exactly 3 heads. We seek Pr[A].

Note that |Ω| = 25, since there are 5 flips and each flip can either be Heads or Tails.

Note that |A| =
(

5
3

)
, since we can construct an outcome in A by selecting 3 flips to be Heads,

and let the others be Tails.

Since we have a uniform probability space, we have that:

Pr[A] =
|A|
|Ω|

=

(
5
3

)
25

(b) Let B be the event where we get at least 1 head. We seek Pr[B]. This seems hard to determine,

so let us try to work out Pr[B] instead. In English, B is the event where we do not get any

heads.

Again, |Ω| = 25. This should not change, as we are studying the same probabilistic game.

Note that |B| = 1, since there is only one outcome where we do not get any heads (the outcome

TTTTT ).

Since we have a uniform probability space, we have that:

Pr[B] =
|B|
|Ω|

=
1

25



Lecture 16 CMSC 250 6

So we have that:

Pr[B] = 1− Pr[B] = 1− 1

25

Catalog of LATEXCommands

A - \overline{A} Pr[A] - \Pr[A]


