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Strong Induction.

If we are trying to prove a claim:

∀n ∈ Z, n ≥ BC,P (n)

we can equivalently prove:

P (BC) ∧ (∀k ∈ Z, k ≥ BC, (P (BC) ∧ P (BC + 1) ∧ P (BC + 2) ∧ · · · ∧ P (k)) =⇒ P (k + 1))

Note that the only difference between “normal” induc-

tion and “strong” induction is what we assume in the

Induction Hypothesis. In normal induction, we assume

that P (k) is true, and go on to show that P (k + 1) is

true. In strong induction, we assume that P (j) is true,

for any j between the base case and k, and go on to show

that P (k + 1) is true.
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The rest of the induction step proceeds in a similar fash-

ion.

Problem: Suppose we have the following sequence:

a1 = 1 a2 = 3 ai = ai−2 + 2ai−1, i ∈ Z, i ≥ 3

Use strong induction to prove that for any n ∈ Z+, an is

odd.

Solution: Define P (k) to be the claim that ak is

odd.

Base Cases: When n = 1, a1 = 1, which is odd.

When n = 2, a2 = 3, which is also odd.

We need 2 base cases, the Induction Step does not prove

that claim for P (2).

Induction Hypothesis: Assume P (j) is true, for 1 ≤
j ≤ k, for some k ∈ Z+.

Induction Step: We want to show that ak+1 = 2`+ 1,

for some ` ∈ Z.

ak+1 = ak−1 + 2ak
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By the Induction Hypothesis, ak−1 and ak are both odd.

Let ak−1 = 2x + 1 and ak = 2y + 1, for some integers x

and y.

ak+1 = (2x + 1) + 2(2y + 1)

ak+1 = 2x + 1 + 4y + 2 = 2(x + 2y + 1) + 1

Thus, ak+1 is odd.

Problem: Prove that, for any positive integer n, if

x1, x2, . . . , xn are n distinct real numbers, then no matter

how the parenthesis are inserted into their product, the

number of multiplications used to compute the product

is n− 1.

Solution: Let P (n) be the predicate that “If x1, x2, . . . , xn
are n distinct real numbers, then no matter how the

parentheses are inserted into their product, the num-

ber of multiplications used to compute the product is

n− 1”.

Base Case: P (1) is true, since x1 is computed using 0

multiplications.
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Induction Hypothesis: Assume that P (j) is true for

all j such that 1 ≤ j ≤ k, for some k ∈ Z+.

Induction Step: We want to prove P (k + 1). Con-

sider the product of k+1 distinct factors, x1, x2, . . . , xk+1.

When parentheses are inserted in order to compute the

product of factors, some multiplication must be the final

one. Consider the two terms, of this final multiplication.

Each one is a product of at most k factors. Suppose

the first and the second term in the final multiplication

contain fk and sk factors. Clearly, 1 ≤ fk, sk ≤ k.

Thus, by induction hypothesis, the number of multipli-

cations to obtain the first term of the final multiplication

is fk− 1 and the number of multiplications to obtain the

second term of the final multiplication is sk − 1. It fol-

lows that the number of multiplications to compute the

product of x1, x2, . . . , xk, xk+1 is

(fk − 1) + (sk − 1) + 1 = fk + sk − 1 = k + 1− 1 = k
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Introduction to Probability

Probability theory has many applications in engineering,

medicine, etc. It has also found many useful applica-

tions in computer science, such as cryptography, network-

ing, game theory etc. Many algorithms are randomized

and we need probability theory to analyze them. In this

course, our goal is to understand how to describe uncer-

tainty using probabilistic arguments. To do this we first

have to define a probabilistic model.

A probabilistic model is a mathematical description of a

random process or an experiment. In a random process

exactly one outcome from a set of outcomes is sure to

occur but no outcome can be predicted with certainty.

For example, tossing a coin is an experiment. Below

are definitions of entities associated with the probabilistic

model.

• The outcome/sample space of a random process

or experiment is the set of all possible outcomes.

The outcome/sample space is often denoted by Ω.

Since we are going to study discrete probability Ω
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will be finite or countably infinite (such as integers

and not real numbers).

• The probability function/distribution is a func-

tion Pr : Ω → [0, 1] that assigns each outcome

ω ∈ Ω a probability value that is a real number

from 0 to 1.

The probability function must satisfy the following

requirements:

– 0 ≤ Pr[ω] ≤ 1

–
∑

ω∈Ω Pr[ω] = 1

• The probability space is the combination of an

outcome space and a probability distribution.

In an experiment we are usually interested in the proba-

bility that an event occurs. An event is a set containing

of the outcomes of interest. For example, when tossing

a coin we may be interested in knowing the probability

that the result is heads. Below we define formally what

an event is and what does it mean to calculate the prob-

ability of an event.
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• A subset of the sample space is called an event.

• For any event, A ⊆ Ω, the probability of A is de-

fined as

Pr[A] =
∑
ω∈A

Pr[ω]

For any event A, we also have a concept of a comple-

mentary event, denoted A or Ac. The complement event

contains all of the outcomes that do not belong to the

event A. Formally, we can say that A := Ω \A.

Note that the probability of any complement event has

the following relationship with the event:

Pr[A] = 1− Pr[A]

This follows immediately from the following equality:

Pr[A] + Pr[A] = 1

We know that the above equality is true, since any out-

come must either be in A or A, and the sum of the prob-

abilities over all outcomes must equal 1.
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Let us see an example probabilistic game so we can make

the above definitions/concepts concrete.

Example:

Let us consider the probabilistic game that is the roll of

a fair six-sided dice.

Note that Ω = {1, 2, 3, 4, 5, 6}, and the probability func-

tion Pr = {(1, 1
6), (2, 1

6), (3, 1
6), (4, 1

6), (5, 1
6), (6, 1

6)}.

We can check that the sum of the probabilities of all

outcomes is 1.∑
ω∈Ω

[ω] = Pr[1] + Pr[2] + · · ·+ Pr[6] = 6× 1

6
= 1

By inspection, we can see that the probability of any

outcome is between 0 and 1, as required.

Let us consider A, where A is the event that we roll an

even number. Note that A = {2, 4, 6}. We can also

compute Pr[A]:

Pr[A] =
∑
ω∈A

Pr[ω] = Pr[2] + Pr[4] + Pr[6] = 3× 1

6
=

1

2
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Let us consider A. In English, we would say that the com-

plement event is where we roll an odd number. Clearly,

A = {1, 3, 5}.

We can compute A in two ways. First, using the defini-

tion of the probability of any event:

Pr[A] =
∑
ω∈A

Pr[ω] = Pr[1] + Pr[3] + Pr[5] = 3× 1

6
=

1

2

Second, using the relationship between the probability of

an event and its complement:

Pr[A] = 1− Pr[A] = 1− 1

2
=

1

2

Uniform Probability Space

One of the most important and common probability spaces

that we encounter is called the uniform probability

space. A probability space or probability function is

called uniform if each outcome in the space is assigned

an equal probability.
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Suppose we have an outcome space Ω and a uniform prob-

ability function Pr. For any ω ∈ Ω, what is Pr[ω]?

We can solve this from our definitions above. We know

that: ∑
ω∈Ω

Pr[ω] = 1

Let ∀ω ∈ Ω,Pr[ω] = x, for some x ∈ [0, 1]. So we

have: ∑
ω∈Ω

Pr[ω] = 1∑
ω∈Ω

x = 1

|Ω| · x = 1

x =
1

|Ω|

Hence, we have that ∀ω ∈ Ω,Pr[ω] =
1

|Ω|
.

Suppose we have an event A in a uniform probability

space. What is Pr[A]? Again, we can work this out from
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the definitions above.

Pr[A] =
∑
ω∈A

Pr[ω] =
∑
ω∈A

1

|Ω|
=
|A|
|Ω|

Hence, we have that the probability for any event A in a

uniform probability space is:

Pr[A] =
|A|
|Ω|

Problem:

Consider a probabilistic game that is 5 fair coin flips.

(a) What is the probability that we get exactly 3 heads?

(b) What is the probability that we get at least 1 head?

Solution: Let us consider some possible outcomes for

this game. One possible outcome would be HHTHH,

which would be getting heads on flip 1, 2, 4, 5, and get-

ting tails on flip 3. Another possible outcome would be

TTHHH, which would be getting heads on flip 3, 4, 5,

and getting tails on flip 1, 2.
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Note that each of these outcomes should occur with the

same probability, since we are flipping fair coins. Hence,

we have a uniform probability space.

(a) Let A be the event where we get exactly 3 heads. We

seek Pr[A].

Note that |Ω| = 25, since there are 5 flips and each

flip can either be Heads or Tails.

Note that |A| =
(

5
3

)
, since we can construct an out-

come in A by selecting 3 flips to be Heads, and let

the others be Tails.

Since we have a uniform probability space, we have

that:

Pr[A] =
|A|
|Ω|

=

(
5
3

)
25

(b) Let B be the event where we get at least 1 head. We

seek Pr[B]. This seems hard to determine, so let us

try to work out Pr[B] instead. In English, B is the

event where we do not get any heads.

Again, |Ω| = 25. This should not change, as we are

studying the same probabilistic game.
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Note that |B| = 1, since there is only one outcome

where we do not get any heads (the outcome TTTTT ).

Since we have a uniform probability space, we have

that:

Pr[B] =
|B|
|Ω|

=
1

25

So we have that:

Pr[B] = 1− Pr[B] = 1− 1

25

Catalog of LATEXCommands

A - \overline{A} Pr[A] - \Pr[A]


