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Logic

Proposition

A proposition is a statement that is either true or false.

For example, “2 + 2 = 4” and “Sanjeev Khanna is a fac-

ulty at the University of Pennsylvania” are propositions,

whereas “What time is it?”, x2 < x + 40 are not propo-

sitions.

Propositions are often given lower-case letter symbols.

For example, you could denote the proposition “All horses

are red” using a symbol such as p.
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Predicate

A predicate is a function that takes some variables as

input and outputs either true or false. We have not for-

mally touched on functions yet, but an intuitive definition

will suffice here.

For example, consider the statement x < 15. We can

denote such a statement by P (x), where P denotes the

predicate “is less than 15” and x is the variable.

One way of converting a predicate to a proposition is

by assigned the variables in the predicate a value. For

example, the statement P (x) becomes a proposition when

x is assigned a value. In the above example, P (8) is true,

while P (18) is false.

Connectives

We can construct new propositions/predicates from sim-

pler propositions/predicates by using some of the fol-



Lecture 2 CMSC 250 3

lowing connectives. Let p and q be arbitrary proposi-

tions.

Negation (NOT): ¬p or ∼ p (read as “not p”) is the

proposition that is true when p is false and vice-versa.

Conjunction (AND): p ∧ q (read as “p and q”) is the

proposition that is true when both p and q are true.

Disjunction (OR): p∨q (read as “p or q”) is the propo-

sition that is true when at least one of p or q is true.

Exclusive Or (XOR): p⊕q (read as “p exclusive-or q”)

is the proposition that is true when exactly one of p and

q is true is false otherwise.

Implication: p→ q (read as “p implies q”) is the propo-

sition that is false when p is true and q is false and is true

otherwise.

This logical connective captures the meaning of if-then

statements. For example, for a proposition such as “If I

go home early today, then it is raining today”, we can
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let the proposition “I go home early today” be p and “it

is raining today” be q, then we can express the whole

proposition as p→ q.

The implication q → p is called the converse of the im-

plication p → q. The implication ¬p → ¬q is called the

inverse of p → q. The implication ¬q → ¬p is the con-

trapositive of p→ q.

Biconditional: p ↔ q (read as “p if, and only if, q”)

is the proposition that is true if p and q have the same

truth values and is false otherwise. “If and only if” is

often abbreviated as iff.

The following truth table makes the above definitions pre-

cise.
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p q ¬p p ∧ q p ∨ q p⊕ q p→ q q → p p↔ q

T T F T T F T T T

T F F F T T F T F

F T T F T T T F F

F F T F F F T T T

Logical Equivalence

Two compound propositions are logically equivalent if

they always have the same truth value. Two statement

p and q can be proved to be logically equivalent either

with the aid of truth tables.

Example. Show that ¬(p ∧ q) ≡ ¬p ∨ ¬q.

Solution. The truth table below proves the above equiv-

alence.
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p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q
T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

There are a whole slew of logical equivalences (or identi-

ties) that are well established. Here are some important

ones:

Equivalence Name

p ∧ T ≡ p
Identity Laws

p ∨ F ≡ p

p ∨ T ≡ T
Universal Bound Laws

p ∧ F ≡ F

p ∧ p ≡ p
Idempotent Laws

p ∨ p ≡ p

¬(¬p) Double Negation Law

p ∧ q ≡ q ∧ p
Commutative Laws

p ∨ q ≡ q ∨ p
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Equivalence Name

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Associative Laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Distributive Laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q
De Morgan’s Laws

¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p

Absorption Laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T
Negation Laws

p ∧ ¬p ≡ F

You can (and will be asked to for homework) to prove

some of these on your own!

Quantifiers

Another way to convert a predicate, P (x), into a proposi-

tion is through quantification. The two types of quan-
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tification that we will study are universal quantifica-

tion and existential quantification. Using the univer-

sal quantifier ∀ (“for all”) alongside P (x) means that the

statement P (x) is true for all elements in the domain of

x. Thus the proposition ∀x ∈ D,P (x) is true when P (x)

is true for all x ∈ D and is false if there is an element

x′ ∈ D for which P (x′) is false. Using existential quan-

tifier ∃ (“there exists”) alongside P (x) means that there

exists an element in the domain of x for which P (x) is

true. Thus the proposition ∃x ∈ D,P (x) is true if there

is an x′ ∈ D for which P (x′) is true and is false if P (x)

is false for all x ∈ D.

We can also combine multiple quantifiers together. For

example, let say we have the predicate S(x, y) := x = y,

i.e. the predicate that is true if x equals y.

We can write the following propositions with different

meanings:

• ∀x ∈ N, ∀y ∈ N, S(x, y)
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This proposition states that for every x in the set

of natural numbers and every y in the set of natural

numbers, S(x, y) holds. In other words, every natu-

ral number is equal to every other natural number.

This is clearly false.

The instance where x = 1 and y = 2 is a counterex-

ample.

• ∀x ∈ N, ∃y ∈ N, S(x, y)

This proposition states that for every x in the set

of natural numbers, there exists a y in the set of

natural numbers, such that S(x, y) holds. This is

true, since for any arbitrary natural number x, we

can let y be x – cleary x = y in this case.

• ∃x ∈ N, ∀y ∈ N, S(x, y)

This proposition states that there exists some x in

the set of natural numbers, such that for any y

in the set of natural numbers, S(x, y) holds. This
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is false, since this would require a single natural

number to be equal to every natural number.

• ∃x ∈ N, ∃y ∈ N, S(x, y)

This proposition states that there exists some x in

the set of natural numbers and some y in the set of

natural numbers, such that x = y. This is clearly

true – the example x = 1 and y = 1 proves it.

Proving a proposition

Consider the proposition “If Lizzy goes to class, then it

is raining”. Conceivably, it is something we should be

able to prove. If “Lizzy goes to class” and “it is rain-

ing” were propositions, then the task would be relatively

straightforward – we would just need to check on a truth

table.

However, both “Lizzy goes to class” and “it is raining”

have some temporal variable upon which their truth val-
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ues depend. Certainly, if we changed them to “Lizzy goes

to class during this hour” and “it is raining during this

hour” (and then codified the correct timestamp for the

hour), then one could agree that they are indeed propo-

sitions, taking on values of either True or False.

For the sake of this problem, let us set our time horizon

to be days. In other words, what we are really trying to

prove is the following proposition: “For all days, if Lizzy

goes to class that day, then it was raining on that day”.

Notice how we can now extract two predicates from this

proposition, “Lizzy goes to class that day” and “it was

raining on that day”, both of which are dependent on a

specific variable: the day.

Let us formalize this. Let P (d) be the predicate that is

“Lizzy went to class on d”, and Q(d) be the predicate

that is “It was raining on d”. Further, let the set of all

days be D. We can now rewrite the entire proposition as

the following ∀d ∈ D,P (d)→ Q(d).
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Following the discussion on quantifiers earlier, it is now

clear what we must do to prove (or disprove) the propo-

sition. We must examine every day possible, and ensure

that for each of those days P (d) → Q(d) was true! If

there was a single day that P (d) → Q(d) was not true,

then we have disproved the proposition.

Catalog of LATEXCommands

∧ - \land ∨ - \lor ¬ - \lnot ∀ - \forall

∃ - \exists ≡ - \equiv ⊕ - \oplus


