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Graphs

A graph, consists of two sets, a non-empty set, V , of vertices or nodes, and a possibly empty set,

E, of 2-element subsets of V . Such is graph is denoted by G = (V,E).

Each element of E is called an edge. We say that an edge {u, v} ∈ E connects vertices u and

v. Two vertices u and v are adjacent if {u, v} ∈ E. An edge {u, v} is said to be incident on the

vertex u and incident on the vertex v.

Vertices adjacent to a vertex u are called neighbors of u. The number of neighbors of a vertex

v is called the degree of v and is denoted by deg(v). The minimum degree, denoted δ(G), of

a graph G is the degree of the vertex in the graph G with the smallest degree. The maximum

degree, denoted ∆(G), of a graph G is the degree of the vertex in the graph G with the largest

degree.

An edge that connects a vertex to itself is called a loop and multiple edges between the same pair of

vertex are called parallel edges. Graphs without loops and parallel edges are called simple graphs,

otherwise they are called multigraphs.

Some graphs also assign directions to edges. These are known as directed graphs.

Unless specified otherwise, we will only deal with simple, undirected graphs.

Proof: Prove that the sum of degrees of all nodes in a graph is twice the number of edges.

Solution 1: Since each edge is incident to exactly two vertices, each edge contributes two to the

sum of degrees of the vertices. The claim follows.

Solution 2: We can also prove the claim using induction on the number of edges. Let us

reformulate the claim in a way that makes clear all of the parameters in the problem. We are

trying to prove the claim that in a graph G with n vertices and m edges, that:∑
v∈V

deg(v) = 2|E|

Base Case: m = 0

Let G be an arbitrary graph with n vertices and 0 edges. Note that the degree of each vertex in

the graph must be 0, since there are no edges. Thus, the sum of the degree of all of the vertices

must also be 0.
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Induction Hypothesis:

Assume that, for some k ∈ N, an arbitrary graph with n vertices and k edges has the following

property: ∑
v∈V

deg(v) = 2|E|

Induction Step:

Let G(V,E) be an arbitrary graph with n vertices and k + 1 edges. Consider the graph G′(V ′, E′)

that is the graph constructed by removing an arbitrary edge e = {u, v} from G. Note that G′ is a

graph with n vertices and k edges. By the Induction Hypothesis, we know that:∑
v∈V ′

deg(v) = 2|E′|

Let us consider what happens when we add e back. Note that the addition of e increases the degree

of u by 1 and the degree of v by 1, and does not affect the degree of any other vertex. So, we know

that the sum of the degrees of all of the vertices should increase by 2.

Hence, we have that: ∑
v∈V

deg(v) =
∑
v∈V ′

deg(v) + 2

By the Induction Hypothesis, we have that
∑

v∈V ′ deg(v) = 2|E′|:

= 2|E′|+ 2

= 2(|E′|+ 1)

But we know that |E′| = |E| − 1 since we removed one edge from G to construct G′:

= 2(|E| − 1 + 1)

= 2|E|

Problem:

Prove that, in any graph, there are an even number of vertices of odd degree.

Solution:

Let Ve and Vo be the set of vertices with even degree and the set of vertices with odd degree

respectively in a graph G = (V,E). Then,∑
v∈V

deg(v) =
∑
v∈Ve

deg(v) +
∑
v∈Vo

deg(v)

The first term on R.H.S. is even since each vertex in Ve has an even degree. From the previous

example, we know that L.H.S. of the above equation is even. Thus, the second term on the R.H.S.



Lecture 20 CMSC 250 3

must be even. Since each vertex in Vo has odd degree, for the sum of the degrees of vertices in Vo
to be even, |Vo| must be even. This proves the claim.

A walk in G is a non-empty sequence v0e0v1e1 . . . ek−1vk of vertices and edges in G such that

ei = {vi, vi+1} for all i < k.

If the vertices in a walk are all distinct, we call it a path in G. Thus, a path in G is a sequence

of distinct vertices v0, v1, v2, . . . vk such that for all i, 0 ≤ i < k, {vi, vi+1} ∈ E.

The length of the walk/path is the number of edges in the walk/path. Note that the length of the

walk/path is one less than the number of vertices in the walk/path sequence. If vo = vk, the walk

is closed. A closed walk where all vertices, other than the first and last, are distinct is called a

cycle.

The graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

A graph G is connected if there is a path in G between its every pair of vertices.

A graph H is a connected component(“island”) of G if

(a) H is a subgraph of G

(b) H is connected

(c) H is maximal, i.e., H cannot be made bigger by adding vertices

In short, H is a connected component of G if H is a maximal subgraph of G that is connected.

Problem:

Prove that a graph with n vertices and m edges has at least n−m connected components.

Solution:

We will prove this claim by doing induction on m.

Base Case: m = 0

A graph with n vertices and no edges has n connected components as each vertex itself is a connected

component. So the graph has at least n− 0 connected components as required. Hence the claim is

true for m = 0.

Induction Hypothesis:

Assume that, for some k ≥ 0, every graph with n vertices and k edges has at least n− k connected

components.

Induction Step:

We want to prove that a graph, G, with n vertices and k+1 edges has at least n−(k+1) = n−k−1

connected components. Let G be an arbitrary graph with n vertices and k + 1 edges.
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Consider a graph G′ constructed by removing an arbitrary edge {u, v} from G. The graph G′ has n

vertices and k edges. By Induction Hypothesis, G′ has at least n− k connected components. Now

consider what happens when we add {u, v} to G′ to obtain the graph G. We consider the following

two cases:

Case I: u and v belong to the same connected component in G′

In this case, adding the edge {u, v} to G′ is not going to change any connected components of

G′. Hence, in this case the number of connected components of G is the same as the number of

connected components of G′ which is at least n− k > n− k − 1.

Case II: u and v belong to different connected components of G′

In this case, the two connected components containing u and v become one connected component

in G. All other connected components in G′ remain unchanged. Thus, G has one less connected

component than G′. Hence, G has at least n− k − 1 connected components.


