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We will spend this lecture looking at how to tackle this problem in different ways:

Problem: Let T be a tree with n ≥ 2 vertices and where the maximum degree is ∆. Prove that

T has at least ∆ leaves.

Direct Proof:

Let v ∈ V have degree ∆ in T = (V,E). Consider the graph T ′ constructed by removing v from

T .

Lemma:

The removal of any vertex v in the a tree T creates a graph with deg(v) connected components.

Proof of Lemma:

Let T ′ be the graph that is constructed by removing v from T .

First, let us show that T ′ contains at least deg(v) connected components. Note that T ′ contains

n− 1 vertices and n− 1−∆ edges. By the inequality we derived in Lecture 21, we know that T ′

must have at least (n− 1)− (n− 1−∆) = ∆ connected components.

Now we show that T ′ contains exactly deg(v) connected components. Suppose for the sake of

contradiction that T ′ contained p connected components, where p > deg(v). Note that each

connected component is a tree. Let n1, n2, . . . , np be the number of vertices in each connected

component. Note that any connected component i must have ni−1 edges. Hence, T ′ has
∑

i ni−1 =

(n − 1) − p edges. Since we removed deg(v) edges when constructing T ′, T must have (n − 1) −
p + deg(v) edges. Since p 6= deg(v), this is a contradiction, since we know that T must have n− 1

edges.

Hence we know that T ′ has ∆ connected components, each of which is a tree.

There are two possibilities for each component:

Case 1: The component is a single vertex.

In this case, this single vertex is a leaf adjacent to v in T , and thus contributes

one leaf to T .
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Case 2: The component has more than one vertex.

If the component has at least 2 vertex, then it has at least 2 leaves (from Lecture

21). One of the leaves may be adjacent to v and not a leaf in T . But the other

leaf in this component is still a leaf in T . Thus, this component also contributes

at least one leaf to T .

In both cases, each component contains at least one leaf of T and hence T must have ∆ leaves.

Maximal Path (1):

Let v ∈ V have degree ∆. Let S be the set of edges that are incident on v. Label these edges

e1, e2, . . . , e∆. For 1 ≤ i ≤ b∆
2 c, consider a maximal path that includes the edges e2i−1 and e2i.

Note that the endpoints of each of these maximal paths must be leaves, so the maximal path passing

through each pair of edges yields 2 leaves.

Note that the each of the leaves found in this fashion must be distinct. Suppose for the sake

of contradiction that two of the maximal paths have an endpoint at the same leaf `. This is a

contradiction, since it would mean that there is not a unique path from ` to v.

If ∆ is even, then we are done. Since b∆
2 c = ∆

2 when ∆ is even, we have ∆
2 maximal paths each

with 2 leaves, for a total of ∆ leaves as required.

If ∆ is odd, then b∆
2 c = ∆−1

2 . So we have ∆−1
2 maximal paths, each with two leaves. This gives us

∆ − 1 leaves total. Consider the remaining edge that is not used in a pair, let say e∆. Let p∆ be

a maximal path starting from v, e∆, where v is fixed as one of the endpoints. The other endpoint

must be another leaf. Combined with the ∆ − 1 leaves from earlier, this makes for ∆ leaves as

required.

Maximal Path (2):

Let v ∈ V have degree ∆. Consider let S = {u ∈ V | {u, v} ∈ E}. Note that S is the set of

v’s neighbors. For each ui ∈ S, let pi be a maximal path starting from v, {v, ui}, ui, where v is

fixed as one of the endpoints. Note that there must be ∆ such paths. We know from Lecture 21

that any such path pi must terminate in a leaf `i. Lastly, note that since there is a unique path

between any two vertices in a tree, `i must be unique for each pi. Since there are ∆ pi’s, there are

∆ leaves.

Induction on the number of vertices:

Let us prove this by induction on the number of vertices in the graph n.

We formulate a proposition P (n) which is: in a tree with n vertices and maximum degree ∆, the

number of leaves in the tree is at least ∆.

Base Case (n=2 and 3): There is only one possible tree when n = 2: T = (V,E), V = {u, v},
E = {{u, v}}. Here ∆ = 1, and we have 2 leaves, so it checks out as required.
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There is only one possible tree when n = 3: T = (V,E), V = {u, v, w}, E = {{u, v}, {v, w}}. Here

∆ = 2, and we have 2 leaves, so it checks out as required.

We choose to show two base cases here to avoid a slightly unfortunate edge case in the Induction

Step.

Induction Hypothesis: Assume that P (k) is true, for some k ∈ Z+, k ≥ 2.

Induction Step: Consider an arbitrary tree T = (V,E) such that |V | = k+1 and it has maximum

degree ∆. Let ` ∈ V be an arbitrary leaf in T who has some neighbor a. Consider T ′ = (V ′, E′)

where V ′ = V \ ` and E′ = E \ {a, `}.

We know that |V ′| = k and is a tree (since removal of a leaf can never disconnect a tree), so we can

apply the Induction Hypothesis on T ′.

Note that there are two cases here:

1. a was the only vertex of degree ∆ in T .

It must be the case then that a has degree ∆ − 1 in T ′ and is of maximum degree. The

Induction Hypothesis gives us that T ′ must have at least ∆− 1 leaves.

Further note if a is a leaf, then it must be the case that n = 3 (convince yourself of this),

and that is already shown to be true by the base case. Hence, going forward we will operate

under the assumption that a is not a leaf.

Adding ` back to T ′ to reconstruct T increases the number of leaves by one (since v is not a

leaf), so we have that T has at least ∆ leaves.

2. There is some vertex in T ′ that has degree ∆.

By the Induction Hypothesis, we have that T ′ must have ∆ leaves.

There are two more cases here:

(a) a is a leaf in T ′

In this case, the addition of ` does not change the number of leaves, which means we

have at least ∆ leaves in T , as desired.

(b) a is not a leaf in T ′

In this case, the addition of ` increases the number of leaves by 1, which means we have

at least ∆ + 1 leaves in T , which proves our claim.


