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Problem: Let T be a tree with n ≥ 2 vertices and

where the maximum degree is ∆. Prove that T has at

least ∆ leaves.

Using inequalities:

We know that a tree with n vertices must have n − 1

edges. Since the sum of the degrees of all the vertices in

a graph must be twice the number of edges, we know that

the total of all degrees in the tree must be 2n− 2.

Let us consider the following partitioning of the vertices

in V . Let A = {v ∈ V | deg(v) = ∆}, B = {v ∈ V | 1 <

deg(v) < ∆}, and C = {v ∈ V | deg(v) = 1}. Note that

V = A ∪ B ∪ C and A ∩ B = ∅, A ∩ C = ∅, B ∩ C = ∅.
Note that C is the set of leaves.
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2n− 2 =
∑
v∈V

deg(v)

=
∑
v∈A

deg(v) +
∑
v∈B

deg(v) +
∑
v∈C

deg(v)

= ∆ · |A|+
∑
v∈B

deg(v) + |C|

≥ ∆ · |A|+ |C|+ 2 · |B|
= ∆ · |A|+ |C|+ 2 · (n− |A| − |C|)
= (∆− 2) · |A| − |C|+ 2n

≥ (∆− 2)− |C|+ 2n

Hence we have established that 2n−2 ≥ (∆−2)−|C|+2n.

Further, we have that:

2n− 2 ≥ (∆− 2)− |C|+ 2n

−2 ≥ ∆− 2− |C|
|C| ≥ ∆

Hence we have that the number of leaves is at least ∆.

Using a nifty formula from Homework 9
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From Homework 9, we know that for a tree T with n > 1

vertices, the number of leaves in T is exactly:

2 +
∑

vi∈V :deg(vi)≥3

(deg(vi)− 2)

Let u be an arbitrary vertex in T with degree ∆. Assume

for now that ∆ ≥ 3. Note that the number of leaves is

bounded by:

2 +
∑

vi∈V :deg(vi)≥3

(deg(vi)− 2) ≥ 2 + (deg(u)− 2)

= 2 + (∆− 2)

= ∆

Hence, we have at least ∆ leaves in T as required. Note

that the cases where ∆ ≤ 2 are handled trivially, since we

are guaranteed a minimum of 2 leaves as we know that

n > 1.

Problem: Recall the problem of goats, cars and doors.

Suppose now that there are n doors, but still only 1 door
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has a car behind it. Suppose further that the contes-

tant selects doors uniformly at random and opens them

until he finds the door with the car behind it. What is

the expected number of doors that the contestant will

have to open to get the door with the car? (You should

include the opening of the door with the car in this cal-

culation)

Solution:

Let X be the random variable that denotes the number

of doors that the contestant to get the car. Let Xi be the

indicator random variable for the event that the contes-

tant needs to open at least i doors to get the car.

Note that X =
∑

iXi. By the linearity of expectation,

we have that:

E[X] =
∑
i

E[Xi]

=
∑
i

Pr[Xi = 1]

But what is Pr[Xi = 1]. Note that it is not the same

value for any particular i – it is 1 when i = 1 and much
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much smaller when i = n. But the goal is to still be able

to determine this for an arbitrary i.

For Xi to be 1, it must be that the first i− 1 doors that

the contestant opened had goats behind it. Note that for

any Xi = 1, we can construct the outcomes in the event

in the following way:

Step 1: Fix the car into one of the remaining

doors – n− (i− 1) ways

Step 2: Fix all of the other doors to be goats –

1 ways

Finally, note that |Ω| = n, since we just need to fix a

door (in the sequence that the contestant selects) for a

car. So, Pr[X = i] = n−(i−1)
n .

E[X] =

n∑
i=1

Pr[Xi = 1]

=

n∑
i=1

n− (i− 1)

n
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Using the sum for an arithmetic series, we have:

=
n(n + 1)

2n

=
n + 1

2

Problem: Now let us suppose that after each door that

the contestant opens, the doors are all shuffled around so

that the car is again equally likely to be at any door. Now

what is the expected number of doors that the contestant

will have to open to get the door with the car? (You

should include the opening of the door with the car in

this calculation)

Solution:

Let X be the random variable that denotes the number

of doors that the contestant to get the car. Let Xi be the

indicator random variable for the event that the contes-

tant needs to open at least i doors to get the car.

Note that X =
∑

iXi. By the linearity of expectation,
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we have that:

E[X] =
∑
i

E[Xi]

=
∑
i

Pr[Xi = 1]

But what is Pr[Xi = 1]. Note that it is not the same

value for any particular i – it is 1 when i = 1 and much

much smaller when i = n. But the goal is to still be able

to determine this for an arbitrary i.

For Xi to be 1, it must be that the first i− 1 doors that

the contestant opened had goats behind it.

So:
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Pr[Xi = 1] = Pr[Xi = 1|(X1 = 1) ∩ (X2 = 1) ∩ · · · ∩ (Xi−1 = 1)]

· Pr[Xi1 = 1|(X1 = 1) ∩ (X2 = 1) ∩ · · · ∩ (Xi−2 = 1)]

· · · · ·
· Pr[X2 = 1|X1 = 1] · Pr[X1 = 1]

Note that ((X1 = 1)∩(X2 = 1)∩· · ·∩(Xk = 1)) ≡ (Xk =

1)

= Pr[Xi = 1|Xi−1 = 1] · Pr[Xi1 = 1|Xi−2 = 1] · . . .
· Pr[X2 = 1|X1 = 1] · Pr[X1 = 1]

Note that the probability Pr[Xk = 1|Xk−1 = 1] = n−1
n

since we are equally likely to get a car on each turn:

=

(
n− 1

n

)(i−1)

Putting it together with the formula for expectation:

E[X] =

∞∑
i=1

Pr[Xi = 1]

=

∞∑
i=1

(
n− 1

n

)(i−1)

= n
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Note above we have used the formula for the sum of an

infinite geometric series, which we give below:

The sum of an infinite geometric series a+ a · r + a · r2 +

a · r3 . . . is a
1−r when |r| < 1.


