CMSC 250: Discrete Structures

Summer 2017

Lecture 26 - Outline

July 18, 2017

Problem: If G is a connected graph in which every vertex has even degree then G has no edge whose deletion leaves a disconnected graph.

Solution:

Assume, for the sake of contradiction, that G has an edge $e=\{u, v\}$ whose deletion results in two connected components A and B (Why can this not generate more than two?). Without loss of generality, let u and v belong to components A and B, respectively. Note that after deleting e the degrees of vertices u and v become odd, whereas the degrees of the remaining vertices remain even (they do not change). This means that in the connected component A (B, respectively) there is only one odd-degree vertex, namely u (v, respectively). This is a contradiction, since any connected component must have an even number of odd-degree vertices.

Problem:

Let P_{1} and P_{2} denote two paths in a connected graph G with maximum length. Prove that P_{1} and P_{2} have a common vertex.

Solution:

Assume towards a contradiction that P_{1} and P_{2} do not share a common vertex. Since the graph is connected, there exists a shortest path connecting P_{1} to P_{2} with endpoints at vertices u in P_{1} and v in P_{2}. Call this shortest path connecting u to $v P_{3} . P_{3}$ contains no vertices in P_{1} or P_{2} other than u and v - if it did, then we could find a shorter path connecting vertices in P_{1} and P_{2} by cutting out the extra vertices in P_{3}.

Call the endpoints of $P_{1} a$ and b and the endpoints of $P_{2} c$ and d. Since u is in P_{1}, there exists paths from a to u and from b to u. Call the maximum of the two paths P_{4}. (If u is equal to a (or b), let P_{4} be the path from b (or a) to u).

Since v is in P_{2}, there exists paths from v to c and from v to d. Call the maximum of the two paths P_{5}. (If v is equal to c (or d), let P_{5} be the path from v to d (or c).

By combining paths P_{4}, P_{3}, and P_{5} to get the path $P_{4} P_{3} P_{5}$, we obtain a path that is longer than P_{1} and P_{2}, thus contradicting the assumption that P_{1} and P_{2} were paths of maximum length.

Problem:

We are at an orientation event with 7000 people where no one knows each other. Suppose that during this event, two people become friends with probability p, independently at random.

What is the expected number of friendships?

Solution:

Let X be the number of friendships formed at this orientation event. Let us define indicator random variables X_{i} for the event that the i th pair of people (in some arbitrary ordering) are friends. Note that $X=\sum_{i} X_{i}$.

By the Linearity of Expectation, we have:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} \mathbf{E}\left[X_{i}\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{i}=1\right]
\end{aligned}
$$

Note that $\operatorname{Pr}\left[X_{i}=1\right]=p$, since that is the probability that any two people are friends. Plugging this in, and noting that there are $\binom{7000}{2}$ pairs:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} \operatorname{Pr}\left[X_{i}=1\right] \\
& =\sum_{i} p \\
& =\binom{7000}{2} p
\end{aligned}
$$

Solving for $p=0.02$ (not an unrealistic assumption!), we have that $\mathbf{E}[X]=489930$. Not bad!

Problem:

In the same situation, what is the expected number of groups of size 5 that are all friends?

Solution:

Let X be the number of friendships formed at this orientation event. Let us define indicator random variables X_{i} for the event that the i th group of 5 (in some arbitrary ordering) are all friends. Note that $X=\sum_{i} X_{i}$.

By the Linearity of Expectation, we have:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} \mathbf{E}\left[X_{i}\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{i}=1\right]
\end{aligned}
$$

But what is $\operatorname{Pr}\left[X_{i}=1\right]$ for any arbitrary i ? Well, in order for the entire group of 5 to be friends, each pair of people in the group must be friends. Since there are $\binom{5}{2}$ such pairs, and each become friends with probability p independently, we have that: $\operatorname{Pr}\left[X_{i}=1\right]=p^{\binom{5}{2}}$.

Putting this together, and noting that there are $\binom{7000}{5}$ such groups, we have that:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} p^{\binom{5}{2}} \\
& =\binom{7000}{5} p^{\binom{5}{2}}
\end{aligned}
$$

Solving for $p=0.02$ again, we have that $\mathbf{E}[X]=1.43$.

Problem:

In the same situation, what is the expected number of groups of size 5, that include me, that are all friends?

Solution:

Let X be the number of friendships formed at this orientation event. Let us define indicator random variables X_{i} for the event that the i th group of 5 (in some arbitrary ordering), that includes me and are all friends. Note that $X=\sum_{i} X_{i}$.

By the Linearity of Expectation, we have:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} \mathbf{E}\left[X_{i}\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{i}=1\right]
\end{aligned}
$$

But what is $\operatorname{Pr}\left[X_{i}=1\right]$ for any arbitrary i ? Well, in order for the entire group of 5 to be friends, each pair of people in the group must be friends. Since there are $\binom{5}{2}$ such pairs, and each become friends with probability p independently, we have that: $\operatorname{Pr}\left[X_{i}=1\right]=p^{\binom{5}{2}}$.
Putting this together, and noting that there are $\binom{6999}{4}$ such groups (since we fix me into the group of 5), we have that:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} p^{\binom{5}{2}} \\
& =\binom{6999}{4} p^{\binom{5}{2}}
\end{aligned}
$$

Solving for $p=0.02$ again, we have that $\mathbf{E}[X]=0.00102$.

Problem:

Assume now that I am better at making friends, and make friends with any particular person with probability q, independently at random.

In the same situation, what is the expected number of groups of size 5, that include me, that are all friends?

Solution:

Let X be the number of friendships formed at this orientation event. Let us define indicator random variables X_{i} for the event that the i th group of 5 (in some arbitrary ordering), that includes me and are all friends. Note that $X=\sum_{i} X_{i}$.

By the Linearity of Expectation, we have:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} \mathbf{E}\left[X_{i}\right] \\
& =\sum_{i} \operatorname{Pr}\left[X_{i}=1\right]
\end{aligned}
$$

But what is $\operatorname{Pr}\left[X_{i}=1\right]$ for any arbitrary i ? Well, in order for the entire group of 5 to be friends, each pair of people in the group must be friends. Note that there are two types of pairs: those that include me and those that do not.
For each of the $\binom{4}{2}$ pairs that do not include me, all of the pairs are friends with probability $p^{\binom{4}{2}}$.

For each of the 4 pairs that do include me, all of the pairs are friends with probability q^{4}.
Putting this together (since each pair occurs independently), $\operatorname{Pr}\left[X_{i}=1\right]=p^{\binom{4}{2}} \times q^{4}$
Putting this together, and noting that there are $\binom{6999}{4}$ such groups (since we fix me into the group of 5), we have that:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i} p^{\binom{4}{2}} \times q^{4} \\
& =\binom{6999}{4} p^{\binom{4}{2}} \times q^{4}
\end{aligned}
$$

Solving for $p=0.02$ and $q=0.2$, we have that $\mathbf{E}[X]=10.2$.

