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Introduction to Proofs

Some Definitions:

• An integer n is even iff n = 2k for some k ∈ Z.

We can write this using notation as follows:

n is even ↔ ∃k ∈ Z s.t. n = 2k

• An integer n is odd iff n = 2k + 1 for some k ∈ Z.

We can write this using notation as follows:

n is odd ↔ ∃k ∈ Z s.t. n = 2k + 1

• An integer n is prime iff n > 1 and for all positive

integers r and s, if n = r · s, then r = 1 or s = 1.
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• An integer n is composite iff n > 1 and n is not a

prime.

• An integer b is said to divide a, a 6= 0, iff a = bk

for some k ∈ Z. This is normally denoted b | a.

We can also say that a is divisible by b in this case.

We can write this using notation as follows:

b | a↔ a 6= 0 ∧ ∃k ∈ Z s.t. a = bk

Direct Proofs

Prove: Prove that the sum of two even integers is an

even integer.

Solution: Let x and y be arbitrary even integers. We

want to show that x + y is also even.

We know that, by the definition of an even integer, x = 2k

for some k ∈ Z and y = 2` for some ` ∈ Z. Hence:

x + y = 2k + 2`

= 2(k + `)



Lecture 3 CMSC 250 3

Let m = k + `,

x + y = 2m

Since we have shown that x + y = 2m, for some m ∈ Z,

we have, by definition, that x + y is even.

Prove: For all integers x and y, if 6 | x and 4 | y, then

2 | (5x− 7y).

Solution: Let x and y be arbitrary integers such that

6 | x and 4 | y. We want to show that 2 | (5x − 7y), or

equivalently, that 5x− 7y = 2m, for some m ∈ Z.

By the definition of divisibility, we have that x = 6k,

for some k ∈ Z and that y = 4`, for some ` ∈ Z.

Hence:

5x− 7y = 5(6k)− 7(4`)

= 30k − 28`

= 2(15k − 14`)

Let m = 15k − 14`,

5x− 7y = 2m
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Since we have shown that 5x−7y = 2m, for some m ∈ Z,

we have, by definition, that 2 | 5x− 7y is even.

Prove: Prove that for any set A and B, A \ (A \B) ⊆
B.

Solution: Let A and B be arbitrary sets. Let x be an

arbitrary element such that x ∈ A \ (A \B). We want to

show that x ∈ B.

x ∈ A \ (A \B) =⇒ x ∈ A ∧ x 6∈ (A \B)

=⇒ x ∈ A ∧ ¬(x ∈ (A \B))

=⇒ x ∈ A ∧ ¬(x ∈ A ∧ x 6∈ B))

=⇒ x ∈ A ∧ (x 6∈ A ∨ x ∈ B) (by DeMorgan’s Laws)

=⇒ (x ∈ A ∧ x 6∈ A) ∨ (x ∈ A ∧ x ∈ B) (by Distributive laws)

=⇒ F ∨ (x ∈ A ∧ x ∈ B) (by Negation laws)

=⇒ x ∈ A ∧ x ∈ B (by Identity laws)

=⇒ x ∈ B

Since we have shown that an arbitrary x ∈ A \ (A \B) is

also in B, we have proven the claim.

Prove: Prove for any sets A and B, (A∪B)\(A∩B) =

(A \B) ∪ (B \A).
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Solution: To prove set equality C = D, we need to

show that C ⊆ D and D ⊆ C.

Let A and B be arbitrary sets.

Lemma: Prove that (A∪B) \ (A∩B) ⊆ (A \B)∪ (B \
A).

Let x be in arbitrary element such that x ∈ (A∪B)\(A∩
B). We want to show that x ∈ (A \B) ∪ (B \A).

x ∈ (A ∪B) \ (A ∩B) =⇒ x ∈ (A ∪B) ∧ x 6∈ (A ∩B)

=⇒ (x ∈ A ∨ x ∈ B) ∧ ¬(x ∈ (A ∩B))

=⇒ (x ∈ A ∨ x ∈ B) ∧ ¬(x ∈ A ∧ x ∈ B)

=⇒ (x ∈ A ∨ x ∈ B) ∧ (x 6∈ A ∨ x 6∈ B) (by DeMorgan’s Laws)

=⇒ (x ∈ A ∧ (x 6∈ A ∨ x 6∈ B)) ∨ (x ∈ B ∧ (x 6∈ A ∨ x 6∈ B)) (by Distributive Laws)

=⇒ ((x ∈ A ∧ x 6∈ A) ∨ (x ∈ A ∧ x 6∈ B))

∨ ((x ∈ B ∧ x 6∈ A) ∨ (x ∈ B ∧ x 6∈ B)) (by Distributive Laws)

=⇒ (F ∨ (x ∈ A ∧ x 6∈ B)) ∨ ((x ∈ B ∧ x 6∈ A) ∨ F ) (by Negation Laws)

=⇒ (x ∈ A ∧ x 6∈ B) ∨ (x ∈ B ∧ x 6∈ A) (by Identity Laws)

=⇒ (x ∈ A \B) ∨ (x ∈ B \A)

=⇒ x ∈ (A \B) ∪ (B \A)

Since we have shown that an arbitrary x ∈∈ (A ∪ B) \
(A ∩B) is also in (A \B) ∪ (B \A), we have proven the

lemma.

Lemma: Prove that (A \B)∪ (B \A) ⊆ (A∪B) \ (A∩
B).
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Let x be in arbitrary element such that x ∈ (A\B)∪(B \
A). We want to show that x ∈ (A ∪B) \ (A ∩B).

x ∈ (A \B) ∪ (B \A) =⇒ (x ∈ A \B) ∨ (x ∈ B \A)

=⇒ (x ∈ A ∧ x 6∈ B)∨
(x ∈ B ∧ x 6∈ A)

Note that we have arrived at two cases here. The first

case is x ∈ A ∧ x 6∈ B. The second case x ∈ B ∧ x 6∈ A.

We can proceed to deal with these separately – as long

as we can show x ∈ (A ∪ B) \ (A ∩ B) in both cases, we

are good to go.

Case 1: x ∈ A ∧ x 6∈ B

x ∈ A ∧ x 6∈ B =⇒ (x ∈ A ∨ x ∈ B) ∧ (x 6∈ B ∨ x 6∈ A) (think carefully about this step)

=⇒ (x ∈ A ∪B) ∧ ¬(x ∈ B ∧ x ∈ A)

=⇒ x ∈ A ∪B ∧ ¬(x ∈ A ∩B)

=⇒ x ∈ (A ∪B) \ (A ∩B)

Case 2: x ∈ B ∧ x 6∈ A

This case is very similar to Case 1, so we shall omit the
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details. It simply involves switching the roles of A and

B.

Since we have proven both cases, we have proven the

lemma. Note how much shorter this proof was using

cases – often a good choice of cases helps to make proofs

dramatically easier.

Since we have shown that (A∪B) \ (A∩B) ⊆ (A \B)∪
(B \ A) and (A \ B) ∪ (B \ A) ⊆ (A ∪ B) \ (A ∩ B), we

have proven the claim.

Cases

We have seen how the use of cases can help to make

proofs easier to tackle. Let’s explore this a little further

with the next proof.

Remember, you are always free to use cases in your proofs.

Just remember to make sure that the cases that you

choose cover all of the elements that you wish to prove

the claim on!

Prove: Prove that, for all integers n, n2 + n + 1 is
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odd.

Solution: Without splitting into cases, this problem is

quite hard to tackle. We know we want to show that

n2 + n + 1 = 2k + 1, for some k ∈ Z, but it is not super

clear how we would go about doing this. Let us try to

split up the set of all integers into two cases: even and

odd.

Case 1: n is even

Let n be an arbitrary even integer, such that n = 2k for

some k ∈ Z.

n2 + n + 1 =(2k)2 + (2k) + 1

=4k2 + 4k + 1

=2(2k2 + 2k) + 1

Let m = 2k2 + 2k,

n2 + n + 1 =2m + 1

Since we have shown that n2 + n+ 1 = 2m+ 1, for some

m ∈ Z, it is odd by definition.



Lecture 3 CMSC 250 9

Case 2: n is odd

Let n be an arbitrary even integer, such that n = 2k + 1

for some k ∈ Z.

n2 + n + 1 =(2k + 1)2 + 2k + 1 + 1

=4k2 + 4k + 1 + 2k + 2

=4k2 + 6k + 2 + 1

=2(2k2 + 3k + 1) + 1

Let m = 2k2 + 3k + 1,

n2 + n + 1 =2m + 1

Since we have shown that n2 + n+ 1 = 2m+ 1, for some

m ∈ Z, it is odd by definition.

Since we have proven the claim in both cases, we have

proven the claim.

Catalog of LATEXCommands



Lecture 3 CMSC 250 10

=⇒ - \implies b | a - b \mid a


