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Introduction to Proofs

More definitions:

A real number is rational iff it can be expressed as a ratio of two integers with a non-zero denom-

inator. More formally,

r is rational↔ ∃a, b ∈ Z, s.t. r =
a

b
∧ b 6= 0.

The set of rational numbers is denoted Q. Note that we can always demand that we choose an a

and b such that they do not share common factors other than 1. If a and b do not have common

factors other than 1, they are said to be relatively prime.

A real number is irrational iff it is not rational. In other words, the set of irrational numbers is

R \Q.

Proofs By Contrapositive

The implication p→ q is logically equivalent to its contrapositive ¬q → ¬p. We can show this:

Prove: Show that p→ q ≡ ¬q → ¬p.

Solution. The truth table below proves the above equivalence.

p q ¬p ¬q p→ q ¬q → ¬p
T T F F T T

T F F T F F

F T T F T T

F F T T T T

This logical equivalence of an implication p → q and its contrapositive is very useful in proofs.

Some proofs may be difficult to tackle directly, but may be made much easier when considering the

contrapositive. This is often the case when not enough can be infered from p and q, but more can

be infered from their negations ¬p and ¬q.

Prove: Prove that for all real numbers a and b, if the product ab is an irrational number, then

either a or b, or both must be irrational.
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Solution. We will prove the above claim by proving the contrapositive. That is, we will show that

if both a and b are rational numbers then their product ab is a rational number. Let a = p
q and

b = r
s , where p, q, r, and s are integers and q 6= 0 and s 6= 0. The product ab can be expressed as

follows.

ab =
p

q
· r
s

=
pr

qs

Let t = p × r and u = q × s. Note that t, u ∈ Z. Also, since q 6= 0 and s 6= 0, u 6= 0. Thus, since

ab = t
u , ab is a rational number by definition.

Example. Prove that for any x, y, z ∈ Z, if x = y + z is even, then y and z must be either both

odd or both even.

Solution. To prove the above claim, we will prove its contrapositive: “If exactly one of y or z is

even, then x = y + z is odd”.

Without loss of generality, for some integers k and l, let y = 2k be even and z = 2l + 1 be odd.

Then,

x =y + z

=2k + 2l + 1

=2(k + l) + 1

Let m = k + l. Since x = 2m + 1, for some m ∈ Z, y + z is odd by definition.

Proofs By Contradiction

Suppose p is some proposition whose truth we want to deduce. In proof by contradiction, we suppose

that p is false and show that this assumption leads logically to a contradiction. By showing this,

it also shows that p is true, since the two are logically equivalent, i.e. p ≡ ¬p→ C. We verify this

from the truth table given below.

p ¬p C ¬p→ C

T F F T

F T F F

Prove: Prove that
√

2 is irrational.

Solution: For the purpose of contradiction, assume that
√

2 is a rational number. Then there are

integers a and b (b 6= 0) with no common factors such that
√

2 =
a

b

Squaring both sides of the above equation gives

2 =
a2

b2

a2 = 2b2 (1)
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From (1) we conclude that a2 is even. This implies that a is even. Then, for some integer k,

let

a = 2k (2)

Combining (1) and (2) we get

4k2 = 2b2

2k2 = b2

The above equation implies that b2 is even and hence b is even. Since we know a is even this means

that a and b have 2 as a common factor which contradicts the assumption that a and b have no

common factors.

We will now give a very elegant proof for the fact that “
√

2 is irrational” using the unique factor-

ization theorem which is also called the fundamental theorem of arithmetic.

The unique factorization theorem states that every positive number can be uniquely represented

as a product of primes. More formally, it can be stated as follows.

Given any integer n > 1, there exist a positive integer k, distinct prime numbers

p1, p2, . . . , pk, and positive integers e1, e2, . . . , ek such that

n = pe11 pe22 pe33 · · · p
ek
k

and any other expression of n as a product of primes is identical to this except, perhaps,

for the order in which the factors are written.

Prove: Prove that
√

2 is irrational using the unique factorization theorem.

Solution: Assume for the purpose of contradiction that
√

2 is rational. Then there are integers a

and b (b 6= 0) such that √
2 =

a

b

Squaring both sides of the above equation gives

2 =
a2

b2

a2 = 2b2

Let S(m) be the sum of the number of times each prime factor occurs in the unique factorization

of m. Note that S(a2) and S(b2) is even. Why? Because the number of times that each prime

factor appears in the prime factorization of a2 and b2 is exactly twice the number of times that it

appears in the prime factorization of a and b. Then, S(2b2) = 1 + S(b2) must be odd. This is a

contradiction as S(a2) is even and the prime factorization of a positive integer is unique.
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We can also use a proof by contradiction to prove logical implications p→ q. To do this, we need

to figure out how to negate p→ q.

Example. Show that p→ q ≡ ¬p ∨ q ≡ (p ∧ ¬q)→ C.

p q ¬p ¬q p→ q ¬p ∨ q p ∧ ¬q C (p ∧ ¬q)→ C

T T F F T T F F T

T F F T F F T F F

F T T F T T F F T

F F T T T T F F T

The above equivalence forms the basis of proofs by contradiction.

Prove. For all integers n, if 3n + 2 is odd then n is odd. Solution. Suppose for the sake of

contradiction that 3n + 2 is odd and n is even. Since n is even, there exists an integer k such that

n = 2k. Thus 3n + 2 can be written as

3n + 2 =3(2k) + 2

=2(3k + 1)

Let ` = 3k + 1. Since 3n + 2 = 2`, for ` ∈ Z, it is even by definition. Note that our premise is

that 3n+ 2 is odd and we have shown that 3n+ 2 is even. This is a contradiction. This proves the

claim.


