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Introduction to Proofs

More definitions:

A real number is rational iff it can be expressed as a

ratio of two integers with a non-zero denominator. More

formally,

r is rational↔ ∃a, b ∈ Z, s.t. r =
a

b
∧ b 6= 0.

The set of rational numbers is denoted Q. Note that we

can always demand that we choose an a and b such that

they do not share common factors other than 1. If a and

b do not have common factors other than 1, they are said

to be relatively prime.
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A real number is irrational iff it is not rational. In other

words, the set of irrational numbers is R \Q.

Proofs By Contrapositive

The implication p → q is logically equivalent to its con-

trapositive ¬q → ¬p. We can show this:

Prove: Show that p→ q ≡ ¬q → ¬p.

Solution. The truth table below proves the above equiv-

alence.

p q ¬p ¬q p→ q ¬q → ¬p
T T F F T T

T F F T F F

F T T F T T

F F T T T T

This logical equivalence of an implication p → q and its

contrapositive is very useful in proofs. Some proofs may

be difficult to tackle directly, but may be made much

easier when considering the contrapositive. This is often
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the case when not enough can be infered from p and q,

but more can be infered from their negations ¬p and

¬q.

Prove: Prove that for all real numbers a and b, if the

product ab is an irrational number, then either a or b, or

both must be irrational.

Solution. We will prove the above claim by proving the

contrapositive. That is, we will show that if both a and

b are rational numbers then their product ab is a rational

number. Let a = p
q and b = r

s , where p, q, r, and s are

integers and q 6= 0 and s 6= 0. The product ab can be

expressed as follows.

ab =
p

q
· r
s

=
pr

qs

Let t = p × r and u = q × s. Note that t, u ∈ Z. Also,

since q 6= 0 and s 6= 0, u 6= 0. Thus, since ab = t
u , ab is a

rational number by definition.

Example. Prove that for any x, y, z ∈ Z, if x = y + z

is even, then y and z must be either both odd or both

even.
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Solution. To prove the above claim, we will prove its

contrapositive: “If exactly one of y or z is even, then

x = y + z is odd”.

Without loss of generality, for some integers k and l, let

y = 2k be even and z = 2l + 1 be odd. Then,

x =y + z

=2k + 2l + 1

=2(k + l) + 1

Let m = k + l. Since x = 2m + 1, for some m ∈ Z, y + z

is odd by definition.

Proofs By Contradiction

Suppose p is some proposition whose truth we want to

deduce. In proof by contradiction, we suppose that p

is false and show that this assumption leads logically to

a contradiction. By showing this, it also shows that p is

true, since the two are logically equivalent, i.e. p ≡ ¬p→
C. We verify this from the truth table given below.
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p ¬p C ¬p→ C

T F F T

F T F F

Prove: Prove that
√

2 is irrational.

Solution: For the purpose of contradiction, assume that√
2 is a rational number. Then there are integers a and

b (b 6= 0) with no common factors such that
√

2 =
a

b

Squaring both sides of the above equation gives

2 =
a2

b2

a2 = 2b2 (1)

From (1) we conclude that a2 is even. This implies that

a is even. Then, for some integer k, let

a = 2k (2)

Combining (1) and (2) we get

4k2 = 2b2

2k2 = b2
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The above equation implies that b2 is even and hence

b is even. Since we know a is even this means that a

and b have 2 as a common factor which contradicts the

assumption that a and b have no common factors.

We will now give a very elegant proof for the fact that

“
√

2 is irrational” using the unique factorization theorem

which is also called the fundamental theorem of arith-

metic.

The unique factorization theorem states that every posi-

tive number can be uniquely represented as a product of

primes. More formally, it can be stated as follows.

Given any integer n > 1, there exist a positive

integer k, distinct prime numbers p1, p2, . . . , pk,

and positive integers e1, e2, . . . , ek such that

n = pe11 pe22 pe33 · · · p
ek
k

and any other expression of n as a product of

primes is identical to this except, perhaps, for

the order in which the factors are written.
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Prove: Prove that
√

2 is irrational using the unique fac-

torization theorem.

Solution: Assume for the purpose of contradiction that√
2 is rational. Then there are integers a and b (b 6= 0)

such that √
2 =

a

b

Squaring both sides of the above equation gives

2 =
a2

b2

a2 = 2b2

Let S(m) be the sum of the number of times each prime

factor occurs in the unique factorization of m. Note that

S(a2) and S(b2) is even. Why? Because the number of

times that each prime factor appears in the prime fac-

torization of a2 and b2 is exactly twice the number of

times that it appears in the prime factorization of a and

b. Then, S(2b2) = 1 + S(b2) must be odd. This is a con-

tradiction as S(a2) is even and the prime factorization of

a positive integer is unique.
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We can also use a proof by contradiction to prove logical

implications p → q. To do this, we need to figure out

how to negate p→ q.

Example. Show that p → q ≡ ¬p ∨ q ≡ (p ∧ ¬q) →
C.

p q ¬p ¬q p→ q ¬p ∨ q p ∧ ¬q C (p ∧ ¬q)→ C

T T F F T T F F T

T F F T F F T F F

F T T F T T F F T

F F T T T T F F T

The above equivalence forms the basis of proofs by con-

tradiction.

Prove. For all integers n, if 3n + 2 is odd then n is

odd. Solution. Suppose for the sake of contradiction

that 3n + 2 is odd and n is even. Since n is even, there

exists an integer k such that n = 2k. Thus 3n+ 2 can be
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written as

3n + 2 =3(2k) + 2

=2(3k + 1)

Let ` = 3k + 1. Since 3n + 2 = 2`, for ` ∈ Z, it is even

by definition. Note that our premise is that 3n + 2 is

odd and we have shown that 3n + 2 is even. This is a

contradiction. This proves the claim.


