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Proofs and an Introduction to Relations

Negating Quantifiers

In order to negate a quantified statement, the rule is to replace universal quantification (∀) with

existential quantification (∃), replace existential quantification (∃) with universal quantification (∀),
and finally negate the predicate that is being quantified.

To be explicit:

¬(∀x ∈ D,P (x)) ≡ ∃x ∈ D,¬P (x)

¬(∃x ∈ D,P (x)) ≡ ∀x ∈ D,¬P (x)

¬(∀x ∈ D,∀y ∈ E,P (x, y)) ≡ ∃x ∈ D,∃y ∈ E,¬P (x, y)

¬(∀x ∈ D,∃y ∈ E,P (x, y)) ≡ ∃x ∈ D,∀y ∈ E,¬P (x, y)

¬(∃x ∈ D,∀y ∈ E,P (x, y)) ≡ ∀x ∈ D,∃y ∈ E,¬P (x, y)

¬(∃x ∈ D,∃y ∈ E,P (x, y)) ≡ ∀x ∈ D,∀y ∈ E,¬P (x, y)

For example:

¬(∀x ∈ Z, x+ 5 = 7) ≡ ∃x ∈ Z, x+ 5 6= 7

¬(∃x ∈ Horses, x is red ) ≡ ∀x ∈ Horses, x is not red

¬(∀x ∈ Z,∃y ∈ Z, x+ 1 = y) ≡ ∃x ∈ Z,∀y ∈ Z, x+ 1 6= y

¬(∃x ∈ Z, ∃y ∈ Z, xy =
√

2) ≡ ∀x ∈ Z,∀y ∈ Z, xy =
√

2

This comes in handy when thinking about disproving claims. A claim must be true, or its negation

is true. Therefore, in order to prove that a claim is false (disprove a claim), you must show that

its negation is true.

For example, let’s say that we are trying to disprove the claim that ∀x ∈ Z, x+ 5 = 7. We need to

show that its negation is true. From the above example, we can see that the negation of the claim

is ∃x ∈ Z, x + 5 6= 7. So, in order to prove the negation of the claim, we just need to show that

there exists some integer x such that x+ 5 6= 7. One such integer that can be used is 1. We call 1

a counterexample to the claim.

Prove: Prove that there are infinitely many prime numbers.
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Solution: Assume, for the sake of contradiction, that there are only finitely many primes. Since

there are a finite number of primes, there must be a largest prime number. Let p be the largest

prime number. Then all the prime numbers can be listed as

2, 3, 5, 7, 11, 13, . . . , p

Consider an integer n that is formed by multiplying all the prime numbers together. That is,

n = (2× 3× 5× 7× · · · p)

Let us consider n+ 1. Clearly, n+ 1 > p. Since p is the largest prime number, n+ 1 cannot be a

prime number. In other words, n is composite.

Let q be any arbitrary prime number. Because of the way we have constructed n, q cannot be a

factor of n+ 1 since we can express n+ 1 = q× (2× 3×· · ·× p) + 1. That is, n+ 1 is not a multiple

of q. This contradicts the Fundamental Theorem of Arithmetic, since it states that any integer can

be uniquely represented as a product of primes.

Floors and Ceilings

Given any real number x, the floor of x, denoted by bxc, is defined as follows

bxc = n↔ n ≤ x < n+ 1 ∧ n ∈ Z

Given any real number x, the ceiling of x, denoted by dxe, is defined as follows

dxe = n↔ n− 1 < x ≤ n ∧ n ∈ Z

Prove: Prove that, for all real numbers x and all integers m,

bx+mc = bxc+m

The challenge of this proof is that we do not yet have an expression for bxc that is easy to manip-

ulate. We propose the following expression:

For any x ∈ R, we can express x = bxc+ ε, where 0 ≤ ε < 1.

Solution: Let x = y + ε, where y = bxc and 0 ≤ ε < 1. Then,

x+m = y + ε+m

bx+mc = by +m+ εc
= y +m

= bxc+m
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Proving a bi-conditional

In order to prove a bi-conditional (iff) statement p ↔ q, we should prove p → q and prove q → p.

By proving this, we have proved p↔ q.

We can do this since p ↔ q ≡ (p → q) ∧ (q → p). We can prove this logical equivalence with the

following truth table.

p q p↔ q p→ q q → p (p→ q) ∧ (q → p)

T T T T T T

T F F F F F

F T F T T F

F F T T T T

Prove: Prove that for all integers x and y, xy is odd iff x is odd and y is odd.

Solution: To prove that claim, we need to prove both directions:

1. If x is odd and y is odd, then xy is odd.

2. If xy is odd, then x is odd and y is odd.

Let us prove the first claim. Let x and y be arbitrary odd numbers. Then, x = 2k+1 and y = 2l+1,

for some integers k and l. We have

x · y =(2k + 1) · (2l + 1)

=4kl + 2(k + l) + 1

=2(2kl + k + l) + 1

Let p = 2kl + k + l. Since k and l are integers, p is an integer and x · y = 2p+ 1 is odd.

Let us prove the second claim. We choose a proof by contrapositive, i.e. we choose to prove that

“If x is even or y is even, then xy is even.”.

We have two cases to consider here:

Case 1: x and y are both even

Let x and y be arbitrary even integers. By definition, x = 2k and y = 2` for some k, ` ∈ Z.

xy =(2k)(2`)

=4k`

=2(2k`)

Let m = 2k`. Since xy = 2m for some m ∈ Z, it is even by definition.

Case 2: exactly one of x and y is even
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With loss of generality, let x be the one that is even and y be the one that is odd. By definition,

x = 2k and y = 2`+ 1, for some k, ` ∈ Z.

xy =(2k)(2`+ 1)

=4k`+ 2k

=2(2k`+ k)

Let m = 2k`+ k. Since xy = 2m for some m ∈ Z, it is even by definition.

Since we have proven both claims (both directions), we have proven the original claim.

Relations

A binary relation is a set of ordered pairs. For example, let R = {(1, 2), (2, 3), (5, 4)}. Then since

(1, 2) ∈ R, we say that 1 is related to 2 by relation R. We denote this by 1R 2. Similarly, since

(4, 7) 6∈ R, 4 is not related to 7 by relation R, denoted by 4 6 R 7.

A binary relation R from set A to set B is a subset of the cartesian product A×B. When A = B

(i.e. R ⊆ A×A), we say that R is a relation on set A.

Below are some more examples of relations.

• “is a student in” is a relation from the set of students to the set of courses.

• “has a crush on” is a relation on the set of people in this world

• “=” is a relation on Z

• “bxc” is a relation from the set of real numbers to the set of integers

Properties of Relations

Let R be a relation defined on set A. We say that R is

• reflexive, if for all x ∈ A, (x, x) ∈ R.

• irreflexive, if for all x ∈ A, (x, x) 6∈ R.

• symmetric, if for all x, y ∈ A, (x, y) ∈ R =⇒ (y, x) ∈ R.

• antisymmetric, if for all x, y ∈ A, xR y and y Rx =⇒ x = y.

• transitive, if for all x, y, z ∈ A, xR y and y R z =⇒ xR z.

Note that the terms reflexive and irreflexive are not opposites. Similarly, note that the terms sym-

metric and antisymmetric are not opposites. A relation may be both symmetric and antisymmetric

or can neither be symmetric nor be antisymmetric.
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Catalog of LATEXCommands

bxc - \lfloor x \rfloor


