CMSC 250: Discrete Structures Summer 2017

Lecture 5 - Outline
 June 6, 2017

Proofs and an Introduction to Relations

Negating Quantifiers

In order to negate a quantified statement, the rule is to replace universal quantification (\forall) with existential quantification (\exists), replace existential quantification (\exists) with universal quantification (\forall), and finally negate the predicate that is being quantified.

To be explicit:

$$
\begin{aligned}
\neg(\forall x \in D, P(x)) & \equiv \exists x \in D, \neg P(x) \\
\neg(\exists x \in D, P(x)) & \equiv \forall x \in D, \neg P(x) \\
\neg(\forall x \in D, \forall y \in E, P(x, y)) & \equiv \exists x \in D, \exists y \in E, \neg P(x, y) \\
\neg(\forall x \in D, \exists y \in E, P(x, y)) & \equiv \exists x \in D, \forall y \in E, \neg P(x, y) \\
\neg(\exists x \in D, \forall y \in E, P(x, y)) & \equiv \forall x \in D, \exists y \in E, \neg P(x, y) \\
\neg(\exists x \in D, \exists y \in E, P(x, y)) & \equiv \forall x \in D, \forall y \in E, \neg P(x, y)
\end{aligned}
$$

For example:

$$
\neg(\forall x \in \mathbb{Z}, x+5=7) \equiv \exists x \in \mathbb{Z}, x+5 \neq 7
$$

$\neg(\exists x \in$ Horses, x is red $) \equiv \forall x \in$ Horses, x is not red $\neg(\forall x \in Z, \exists y \in \mathbb{Z}, x+1=y) \equiv \exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x+1 \neq y$ $\neg(\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x y=\sqrt{2}) \equiv \forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x y=\sqrt{2}$

This comes in handy when thinking about disproving claims. A claim must be true, or its negation is true. Therefore, in order to prove that a claim is false (disprove a claim), you must show that its negation is true.

For example, let's say that we are trying to disprove the claim that $\forall x \in \mathbb{Z}, x+5=7$. We need to show that its negation is true. From the above example, we can see that the negation of the claim is $\exists x \in \mathbb{Z}, x+5 \neq 7$. So, in order to prove the negation of the claim, we just need to show that there exists some integer x such that $x+5 \neq 7$. One such integer that can be used is 1 . We call 1 a counterexample to the claim.

Prove: Prove that there are infinitely many prime numbers.

Solution: Assume, for the sake of contradiction, that there are only finitely many primes. Since there are a finite number of primes, there must be a largest prime number. Let p be the largest prime number. Then all the prime numbers can be listed as

$$
2,3,5,7,11,13, \ldots, p
$$

Consider an integer n that is formed by multiplying all the prime numbers together. That is,

$$
n=(2 \times 3 \times 5 \times 7 \times \cdots p)
$$

Let us consider $n+1$. Clearly, $n+1>p$. Since p is the largest prime number, $n+1$ cannot be a prime number. In other words, n is composite.

Let q be any arbitrary prime number. Because of the way we have constructed n, q cannot be a factor of $n+1$ since we can express $n+1=q \times(2 \times 3 \times \cdots \times p)+1$. That is, $n+1$ is not a multiple of q. This contradicts the Fundamental Theorem of Arithmetic, since it states that any integer can be uniquely represented as a product of primes.

Floors and Ceilings

Given any real number x, the floor of x, denoted by $\lfloor x\rfloor$, is defined as follows

$$
\lfloor x\rfloor=n \leftrightarrow n \leq x<n+1 \wedge n \in \mathbb{Z}
$$

Given any real number x, the ceiling of x, denoted by $\lceil x\rceil$, is defined as follows

$$
\lceil x\rceil=n \leftrightarrow n-1<x \leq n \wedge n \in \mathbb{Z}
$$

Prove: Prove that, for all real numbers x and all integers m,

$$
\lfloor x+m\rfloor=\lfloor x\rfloor+m
$$

The challenge of this proof is that we do not yet have an expression for $\lfloor x\rfloor$ that is easy to manipulate. We propose the following expression:

For any $x \in \mathbb{R}$, we can express $x=\lfloor x\rfloor+\epsilon$, where $0 \leq$ $\epsilon<1$.

Solution: Let $x=y+\epsilon$, where $y=\lfloor x\rfloor$ and $0 \leq \epsilon<1$. Then,

$$
\begin{aligned}
x+m & =y+\epsilon+m \\
\lfloor x+m\rfloor & =\lfloor y+m+\epsilon\rfloor \\
& =y+m \\
& =\lfloor x\rfloor+m
\end{aligned}
$$

Proving a bi-conditional

In order to prove a bi-conditional (iff) statement $p \leftrightarrow q$, we should prove $p \rightarrow q$ and prove $q \rightarrow p$. By proving this, we have proved $p \leftrightarrow q$.

We can do this since $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$. We can prove this logical equivalence with the following truth table.

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$
T	T	T	T	T	T
T	F	F	F	F	F
F	T	F	T	T	F
F	F	T	T	T	T

Prove: Prove that for all integers x and $y, x y$ is odd iff x is odd and y is odd.

Solution: To prove that claim, we need to prove both directions:

1. If x is odd and y is odd, then $x y$ is odd.
2. If $x y$ is odd, then x is odd and y is odd.

Let us prove the first claim. Let x and y be arbitrary odd numbers. Then, $x=2 k+1$ and $y=2 l+1$, for some integers k and l. We have

$$
\begin{aligned}
x \cdot y & =(2 k+1) \cdot(2 l+1) \\
& =4 k l+2(k+l)+1 \\
& =2(2 k l+k+l)+1
\end{aligned}
$$

Let $p=2 k l+k+l$. Since k and l are integers, p is an integer and $x \cdot y=2 p+1$ is odd.

Let us prove the second claim. We choose a proof by contrapositive, i.e. we choose to prove that "If x is even or y is even, then $x y$ is even.".

We have two cases to consider here:

Case 1: x and y are both even

Let x and y be arbitrary even integers. By definition, $x=2 k$ and $y=2 \ell$ for some $k, \ell \in \mathbb{Z}$.

$$
\begin{aligned}
x y & =(2 k)(2 \ell) \\
& =4 k \ell \\
& =2(2 k \ell)
\end{aligned}
$$

Let $m=2 k \ell$. Since $x y=2 m$ for some $m \in \mathbb{Z}$, it is even by definition.

Case 2: exactly one of x and y is even
With loss of generality, let x be the one that is even and y be the one that is odd. By definition, $x=2 k$ and $y=2 \ell+1$, for some $k, \ell \in \mathbb{Z}$.

$$
\begin{aligned}
x y & =(2 k)(2 \ell+1) \\
& =4 k \ell+2 k \\
& =2(2 k \ell+k)
\end{aligned}
$$

Let $m=2 k \ell+k$. Since $x y=2 m$ for some $m \in \mathbb{Z}$, it is even by definition.

Since we have proven both claims (both directions), we have proven the original claim.

Relations

A binary relation is a set of ordered pairs. For example, let $R=\{(1,2),(2,3),(5,4)\}$. Then since $(1,2) \in R$, we
say that 1 is related to 2 by relation R. We denote this by $1 R 2$. Similarly, since $(4,7) \notin R, 4$ is not related to 7 by relation R, denoted by $4 R 7$.

A binary relation R from set A to set B is a subset of the cartesian product $A \times B$. When $A=B$ (i.e. $R \subseteq A \times A$), we say that R is a relation on set A.

Below are some more examples of relations.

- "is a student in" is a relation from the set of students to the set of courses.
- "has a crush on" is a relation on the set of people in this world
- "=" is a relation on \mathbb{Z}
- " $\lfloor x\rfloor$ " is a relation from the set of real numbers to the set of integers

Properties of Relations

Let R be a relation defined on set A. We say that R is

- reflexive, if for all $x \in A,(x, x) \in R$.
- irreflexive, if for all $x \in A,(x, x) \notin R$.
- symmetric, if for all $x, y \in A,(x, y) \in R \Longrightarrow$ $(y, x) \in R$.
- antisymmetric, if for all $x, y \in A, x R y$ and $y R x \Longrightarrow$ $x=y$.
- transitive, if for all $x, y, z \in A, x R y$ and $y R z \Longrightarrow$ $x R z$.

Note that the terms reflexive and irreflexive are not opposites. Similarly, note that the terms symmetric and antisymmetric are not opposites. A relation may be both symmetric and antisymmetric or can neither be symmetric nor be antisymmetric.

Catalog of $\mathrm{AT}_{\mathrm{E}} \mathrm{XCommands}$

$$
\lfloor x\rfloor-\backslash l f l o o r \mathrm{x} \text { \rfloor }
$$

