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Proofs and an Introduction to Rela-

tions

Negating Quantifiers

In order to negate a quantified statement, the rule is to
replace universal quantification (V) with existential quan-
tification (3), replace existential quantification (3) with
universal quantification (V), and finally negate the pred-
icate that is being quantified.
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To be explicit:
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For example:

(Ve €Z,x+5=T7)=Tox€Z,x+5#7
) = Vx € Horses, x is not red
~(VeeZ,yeZaox+l=y)=JxecZVyecZz+1+#y
~(Bre€Z,Iyelay=V2)=Vr €L Vy€L,xy=2

—(3x € Horses, x is red

This comes in handy when thinking about disproving
claims. A claim must be true, or its negation is true.
Therefore, in order to prove that a claim is false (disprove
a claim), you must show that its negation is true.
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For example, let’s say that we are trying to disprove the
claim that Vx € Z,x +5 = 7. We need to show that
its negation is true. From the above example, we can
see that the negation of the claim is dx € Z,z + 5 # 7.
So, in order to prove the negation of the claim, we just
need to show that there exists some integer = such that
x + 5 # 7. One such integer that can be used is 1. We
call 1 a counterexample to the claim.

Prove: Prove that there are infinitely many prime num-
bers.

Solution: Assume, for the sake of contradiction, that
there are only finitely many primes. Since there are a
finite number of primes, there must be a largest prime
number. Let p be the largest prime number. Then all
the prime numbers can be listed as

2,3,5,7,11,13,...,p

Consider an integer n that is formed by multiplying all
the prime numbers together. That is,

n=(2x3x5x7x---p)
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Let us consider n + 1. Clearly, n + 1 > p. Since p is the
largest prime number, n + 1 cannot be a prime number.
In other words, n is composite.

Let ¢ be any arbitrary prime number. Because of the
way we have constructed n, ¢ cannot be a factor of n+ 1
since we can express n+1 = ¢ x (2 X3 X --- X p) + L.
That is, n+ 1 is not a multiple of ¢q. This contradicts the
Fundamental Theorem of Arithmetic, since it states that
any integer can be uniquely represented as a product of
primes.

Floors and Ceilings

Given any real number z, the floor of x, denoted by |z ],
is defined as follows

lz] =n+on<z<n+1lAneZ

Given any real number z, the ceiling of z, denoted by
[x], is defined as follows

[z]=n+n—-1<z<nAncZ
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Prove: Prove that, for all real numbers x and all inte-
gers m,
lz+m] =|z]+m

The challenge of this proof is that we do not yet have
an expression for |x] that is easy to manipulate. We
propose the following expression:

For any =z € R, we can express z = |z| + ¢, where 0 <
e<1l

Solution: Let x =y +¢€, where y = [z] and 0 < e < 1.
Then,

r+m = y+e+m
lz+m] = |y+m+el

= |z]+m
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Proving a bi-conditional

In order to prove a bi-conditional (iff) statement p < g,
we should prove p — ¢ and prove ¢ — p. By proving this,
we have proved p < q.

We can do this since p <> ¢ = (p — q) A (¢ — p). We
can prove this logical equivalence with the following truth
table.

plalpealp—alg—=p| (P9 A(g—p)
T|T| T T T T
T|F| F F F F
F|T| F T T F
FI|F| T T T T

Prove: Prove that for all integers x and y, zy is odd iff
x is odd and y is odd.

Solution: To prove that claim, we need to prove both
directions:

1. If z is odd and y is odd, then zy is odd.

2. If zy is odd, then z is odd and y is odd.



Lecture 5 CMSC 250 7

Let us prove the first claim. Let x and y be arbitrary
odd numbers. Then, x = 2k + 1 and y = 2 + 1, for some
integers k£ and [. We have

r-y=(2k+1)- (20 +1)
=4kl +2(k+1)+ 1
=202kl +k+1)+1
Let p = 2kl + k + . Since k and [ are integers, p is an
integer and x -y = 2p + 1 is odd.

Let us prove the second claim. We choose a proof by
contrapositive, i.e. we choose to prove that “If z is even
or y is even, then zy is even.”.

We have two cases to consider here:
Case 1: z and y are both even

Let x and y be arbitrary even integers. By definition,
x = 2k and y = 2¢ for some k,? € Z.

zy =(2k)(20)
=4kl
=2(2k()
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Let m = 2k{. Since xy = 2m for some m € Z, it is even
by definition.

Case 2: exactly one of x and y is even

With loss of generality, let « be the one that is even and
y be the one that is odd. By definition, x = 2k and
y =20+ 1, for some k,{ € 7Z.

xy =(2k)(20+ 1)
=4kl 4 2k
=2(2kl + k)

Let m = 2kl + k. Since xy = 2m for some m € Z, it is
even by definition.

Since we have proven both claims (both directions), we
have proven the original claim.

Relations

A binary relation is a set of ordered pairs. For example,
let R ={(1,2),(2,3),(5,4)}. Then since (1,2) € R, we
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say that 1 is related to 2 by relation R. We denote this
by 1 R2. Similarly, since (4,7) € R, 4 is not related to 7
by relation R, denoted by 4 RT7.

A binary relation R from set A to set B is a subset of the
cartesian product A x B. When A = B (i.e. R C Ax A),
we say that R is a relation on set A.

Below are some more examples of relations.

e “is a student in” is a relation from the set of stu-
dents to the set of courses.

e “has a crush on” is a relation on the set of people
in this world

e “="is a relation on Z

e “|x|” is a relation from the set of real numbers to
the set of integers

Properties of Relations

Let R be a relation defined on set A. We say that R
is
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o reflezive, if for all z € A, (x,z) € R.
o irreflexive, if for all x € A, (z,x) € R.

o symmetric, if for all z,y € A, (z,y) € R —
(y,x) € R.

e antisymmetric, ifforallz,y € A,xr Ryandy Rx —
r=y.

e transitive, if for all x,y,z € A, r Ryand yRz —
T Rz.

Note that the terms reflerive and irreflexive are not op-
posites. Similarly, note that the terms symmetric and
antisymmetric are not opposites. A relation may be both
symmetric and antisymmetric or can neither be symmet-
ric nor be antisymmetric.

Catalog of KTEXCommands

|z] - \1floor x \rfloor



