CMSC 250: Discrete Structures Summer 2017

Lecture 6 - Outline June 8, 2017

Relations and Functions

Problem: Let A and B be arbitrary sets. How many different relations are there from a set A to a set B?

Solution: Note that all such relations are subsets of the set $A \times B$. In other words, the question is equivalent to asking the question, how many subsets are there of the set $A \times B$.

Recall that $2^{(A \times B)}$ is the set of all subsets of $A \times B$. The cardinality of the powerset is

$$|2^{A \times B}| = 2^{|A \times B|} = 2^{|A| \times |B|}$$

Recall the following properties on relations:

Let R be a relation defined on set A. We say that R is

- reflexive, if for all $x \in A$, $(x, x) \in R$.
- *irreflexive*, if for all $x \in A$, $(x, x) \notin R$.
- symmetric, if for all $x, y \in A$, $(x, y) \in R \implies (y, x) \in R$.
- antisymmetric, if for all $x, y \in A$, x R y and $y R x \implies x = y$.
- transitive, if for all $x, y, z \in A$, x R y and $y R z \implies x R z$.

Problem: What are the properties of the following relations?

 R_1 : "is a sibling of" relation on the set of all people. R_2 : " \leq " relation on \mathbb{Z} . R_3 : " < " relation on \mathbb{Z} . R_4 : "|" relation on \mathbb{Z}^+ . R_5 : "|" relation on \mathbb{Z} .

Solution.

Reflexive : R_2, R_4 Irreflexive : R_1, R_3 Symmetric : R_1 Antisymmetric : R_2, R_3, R_4 Transitive : R_2, R_3, R_4, R_5

Lecture 6

Note that R_5 is not reflexive because $(0,0) \notin R_5$; it is not antisymmetric because for any integer a, a|-a and -a|a, but $a \neq -a$. Observe that R_5 is an example of a relation that is neither symmetric nor antisymmetric.

Equivalence Relations

A relation R on a set A is an *equivalence relation* if and only if it is reflexive, symmetric and transitive.

Prove: Let A be the set of all strings of English letters. Suppose that R is the relation on the set A such that a R b if and only if l(a) = l(b), where l(x) is the length of the string x. Prove that R is an equivalence relation.

Solution: To show that R is an equivalence relation, we need to prove that R is reflexive, symmetric, and transitive.

- **Reflexive:** Let a be an arbitrary string in A. Note that l(a) = l(a), and hence a R a. This shows that R is reflexive.
- Symmetric: Let a, b be arbitrary elements in A. Assume $(a, b) \in R$. Since aRb, this means that l(a) = l(b). Hence l(b) = l(a), so bRa. This shows that R is symmetric.
- **Transitive:** Let a, b, c be arbitrary elements in A. Assume that $(a, b), (b, c) \in R$. Thus l(a) = l(b) and l(b) = l(c), which implies that l(a) = l(c). Hence a R c and R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

Operations on Relations

Since relations are sets, we can take a relation or a pair of relations and produce a new relation using set operations.

Examples:

• Let ">" be the greater than relation on the set of integers. Let "<" be the less than relation on the set of integers.

Then ">" \cup "<" = " \neq "

• Let "≥" be the greater than or equal relation on the set of integers. Let "=" be the equal relation on the set of integers.

Then " \geq " \ "=" = ">".

Functions

Let A and B be sets. A **function** from A to B is a relation, f, from A to B such that for all $a \in A$ there is exactly one $b \in B$ such that $(a, b) \in f$.

Here are some definitions:

- If $(a, b) \in f$, then we write b = f(a).
- A function from A to B is also called a **mapping** from A to B and we write it as $f : A \to B$.
- The set A is called the **domain** of f and the set B the **codomain**.
- If $a \in A$ then the element b = f(a) is called the **image** of a under f. The **range** of f, denoted by $\operatorname{Ran}(f)$ is the set

$$Ran(f) = \{ b \in B \mid \exists a \in A \text{ s.t. } b = f(a) \}$$

• Two functions are **equal** if they have the same domain, have the same codomain, and map each element of the domain to the same element in the codomain.

Examples:

- Some functions are ones that a familiar to ones that you may have studied before. For example: $f_1 : \mathbb{Z} \to \mathbb{Z}, f_1(x) = x^2$
- Functions need not have such a clean definition. For example:

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Then there can be a function $f_2 : A \to B$, such that $f_2(1) = b, f_2(2) = a, f_2(3) = b.$

Let A and B be sets. Let $f : A \to B$ be a function.

• f is said to be **injective**, iff $\forall x, y \in A, x \neq y \implies f(x) \neq f(y)$.

Sometimes it is informative to look at its contrapositive statement:

 $\forall x, y \in A, f(x) = f(y) \implies x = y.$

- f is called **surjective**, iff $\forall b \in B, \exists a \in A, f(a) = b$.
- f is a **bijection**, iff it is both surjective and injective.

Prove: Let $f : \mathbb{Z} \to \mathbb{Z}$, such that f(x) = x + 1. Prove that f is bijective.

To prove that f is bijective, we wish to show that it is injective and surjective.

• Injective: Let x and y be arbitrary elements in A. Assume that $x \neq y$. Then $f(x) = x + 1 \neq y + 1 = f(y)$. Since $f(x) \neq f(y)$, then we have shown that f is injective.

• Surjective: Let x be an arbitrary element in B. Let y = x - 1. Note that f(y) = f(x-1) = x. Hence, since there is a $y \in \mathbb{Z}$ such that f(y) = x, we have that f is surjective.

Since we have shown that the function is injective and surjective, we have that it is bijective.

Injection and Surjection Rule

The Injection Rule

Let A and B be two finite sets. If there is an injective function from A to B, then $|A| \leq |B|$.

We can see this as follows. Since each element in A is mapped to a distinct element in B, this means that |A| = |Ran(f)|. Further, since $Ran(f) \subseteq B$, we know that $|Ran(f)| \leq |B|$. Therefore, $|A| \leq |B|$.

The Surjection Rule

Let A and B be two finite sets. If there is an surjective function from A to B, then $|A| \ge |B|$.

We can see this as follows. Suppose for the sake of contradiction that there is a surjective function, but |A| < |B|. Note that since each element in A is mapped to exactly one element in B, it must be that $|A| \ge |Ran(f)|$. Since $|Ran(f)| \le |A|$ and |A| < |B|, we have that |Ran(f)| < |B|. Since $Ran(f) \subseteq B$ and |Ran(f)| < |B|, it must be that $Ran(f) \subset B$. Therefore, we have that $B \setminus Ran(f) \ne \emptyset$. In other words, there is an element in B such that it is not mapped onto by the function f. This contradicts the assumption that f is surjective.