CMSC 250: Discrete Structures

Summer 2017

Lecture 6 - Outline

June 8, 2017

Relations and Functions

Problem: Let A and B be arbitrary sets. How many different relations are there from a set A to a set B ?

Solution: Note that all such relations are subsets of the set $A \times B$. In other words, the question is equivalent to asking the question, how many subsets are there of the set $A \times B$.
Recall that $2^{(A \times B)}$ is the set of all subsets of $A \times B$. The cardinality of the powerset is

$$
\left|2^{A \times B}\right|=2^{|A \times B|}=2^{|A| \times|B|}
$$

Recall the following properties on relations:
Let R be a relation defined on set A. We say that R is

- reflexive, if for all $x \in A,(x, x) \in R$.
- irreflexive, if for all $x \in A,(x, x) \notin R$.
- symmetric, if for all $x, y \in A,(x, y) \in R \Longrightarrow(y, x) \in R$.
- antisymmetric, if for all $x, y \in A, x R y$ and $y R x \Longrightarrow x=y$.
- transitive, if for all $x, y, z \in A, x R y$ and $y R z \Longrightarrow x R z$.

Problem: What are the properties of the following relations?

$$
\begin{aligned}
& R_{1}: \text { "is a sibling of" relation on the set of all people. } \\
& R_{2}: \text { " } \leq \text { " relation on } \mathbb{Z} \text {. } \\
& R_{3}: \text { "<" relation on } \mathbb{Z} \text {. } \\
& R_{4}: \text { "" relation on } \mathbb{Z}^{+} \text {. } \\
& R_{5}: \text { "" relation on } \mathbb{Z} \text {. }
\end{aligned}
$$

Solution.

$$
\begin{aligned}
& \text { Reflexive : } R_{2}, R_{4} \\
& \text { Irreflexive : } R_{1}, R_{3} \\
& \text { Symmetric : } R_{1} \\
& \text { Antisymmetric : } R_{2}, R_{3}, R_{4} \\
& \text { Transitive }: R_{2}, R_{3}, R_{4}, R_{5}
\end{aligned}
$$

Note that R_{5} is not reflexive because $(0,0) \notin R_{5}$; it is not antisymmetric because for any integer a, $a \mid-a$ and $-a \mid a$, but $a \neq-a$. Observe that R_{5} is an example of a relation that is neither symmetric nor antisymmetric.

Equivalence Relations

A relation R on a set A is an equivalence relation if and only if is reflexive, symmetric and transitive.

Prove: Let A be the set of all strings of English letters. Suppose that R is the relation on the set A such that $a R b$ if and only if $l(a)=l(b)$, where $l(x)$ is the length of the string x. Prove that R is an equivalence relation.

Solution: To show that R is an equivalence relation, we need to prove that R is reflexive, symmetric, and transitive.

- Reflexive: Let a be an arbitrary string in A. Note that $l(a)=l(a)$, and hence $a R a$. This shows that R is reflexive.
- Symmetric: Let a, b be arbitrary elements in A. Assume $(a, b) \in R$. Since $a R b$, this means that $l(a)=l(b)$. Hence $l(b)=l(a)$, so $b R a$. This shows that R is symmetric.
- Transitive: Let a, b, c be arbitrary elements in A. Assume that $(a, b),(b, c) \in R$. Thus $l(a)=l(b)$ and $l(b)=l(c)$, which implies that $l(a)=l(c)$. Hence $a R c$ and R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

Operations on Relations

Since relations are sets, we can take a relation or a pair of relations and produce a new relation using set operations.

Examples:

- Let " $>$ " be the greater than relation on the set of integers. Let " $<$ " be the less than relation on the set of integers.

Then " $>$ " $\cup "<"=" \neq "$

- Let " \geq " be the greater than or equal relation on the set of integers. Let "=" be the equal relation on the set of integers.

Then " \geq " \"=" = ">".

Functions

Let A and B be sets. A function from A to B is a relation, f, from A to B such that for all $a \in A$ there is exactly one $b \in B$ such that $(a, b) \in f$.

Here are some definitions:

- If $(a, b) \in f$, then we write $b=f(a)$.
- A function from A to B is also called a mapping from A to B and we write it as $f: A \rightarrow B$.
- The set A is called the domain of f and the set B the codomain.
- If $a \in A$ then the element $b=f(a)$ is called the image of a under f. The range of f, denoted by $\operatorname{Ran}(f)$ is the set

$$
\operatorname{Ran}(f)=\{b \in B \mid \exists a \in A \text { s.t. } b=f(a)\}
$$

- Two functions are equal if they have the same domain, have the same codomain, and map each element of the domain to the same element in the codomain.

Examples:

- Some functions are ones that a familiar to ones that you may have studied before. For example: $f_{1}: \mathbb{Z} \rightarrow \mathbb{Z}, f_{1}(x)=x^{2}$
- Functions need not have such a clean definition. For example:

Let $A=\{1,2,3\}$ and $B=\{a, b\}$. Then there can be a function $f_{2}: A \rightarrow B$, such that $f_{2}(1)=b, f_{2}(2)=a, f_{2}(3)=b$.

Let A and B be sets. Let $f: A \rightarrow B$ be a function.

- f is said to be injective, iff $\forall x, y \in A, x \neq y \Longrightarrow f(x) \neq f(y)$.

Sometimes it is informative to look at its contrapositive statement:
$\forall x, y \in A, f(x)=f(y) \Longrightarrow x=y$.

- f is called surjective, iff $\forall b \in B, \exists a \in A, f(a)=b$.
- f is a bijection, iff it is both surjective and injective.

Prove: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$, such that $f(x)=x+1$. Prove that f is bijective.
To prove that f is bijective, we wish to show that it is injective and surjective.

- Injective: Let x and y be arbitrary elements in A. Assume that $x \neq y$. Then $f(x)=$ $x+1 \neq y+1=f(y)$. Since $f(x) \neq f(y)$, then we have shown that f is injective.
- Surjective: Let x be an arbitrary element in B. Let $y=x-1$. Note that $f(y)=f(x-1)=$ x. Hence, since there is a $y \in \mathbb{Z}$ such that $f(y)=x$, we have that f is surjective.

Since we have shown that the function is injective and surjective, we have that it is bijective.

Injection and Surjection Rule

The Injection Rule

Let A and B be two finite sets. If there is an injective function from A to B, then $|A| \leq|B|$.
We can see this as follows. Since each element in A is mapped to a distinct element in B, this means that $|A|=|\operatorname{Ran}(f)|$. Further, since $\operatorname{Ran}(f) \subseteq B$, we know that $|\operatorname{Ran}(f)| \leq|B|$. Therefore, $|A| \leq|B|$.

The Surjection Rule

Let A and B be two finite sets. If there is an surjective function from A to B, then $|A| \geq|B|$.
We can see this as follows. Suppose for the sake of contradiction that there is a surjective function, but $|A|<|B|$. Note that since each element in A is mapped to exactly one element in B, it must be that $|A| \geq|\operatorname{Ran}(f)|$. Since $|\operatorname{Ran}(f)| \leq|A|$ and $|A|<|B|$, we have that $|\operatorname{Ran}(f)|<|B|$. Since $\operatorname{Ran}(f) \subseteq B$ and $|\operatorname{Ran}(f)|<|B|$, it must be that $\operatorname{Ran}(f) \subset B$. Therefore, we have that $B \backslash \operatorname{Ran}(f) \neq \varnothing$. In other words, there is an element in B such that it is not mapped onto by the function f. This contradicts the assumption that f is surjective.

