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Relations and Functions

Problem: Let A and B be arbitrary sets. How many different relations are there from a set A to

a set B?

Solution: Note that all such relations are subsets of the set A× B. In other words, the question

is equivalent to asking the question, how many subsets are there of the set A×B.

Recall that 2(A×B) is the set of all subsets of A×B. The cardinality of the powerset is∣∣2A×B∣∣ = 2|A×B| = 2|A|×|B|

Recall the following properties on relations:

Let R be a relation defined on set A. We say that R is

• reflexive, if for all x ∈ A, (x, x) ∈ R.

• irreflexive, if for all x ∈ A, (x, x) 6∈ R.

• symmetric, if for all x, y ∈ A, (x, y) ∈ R =⇒ (y, x) ∈ R.

• antisymmetric, if for all x, y ∈ A, xR y and y Rx =⇒ x = y.

• transitive, if for all x, y, z ∈ A, xR y and y R z =⇒ xR z.

Problem: What are the properties of the following relations?

R1 : “is a sibling of” relation on the set of all people.

R2 : “ ≤ ” relation on Z.
R3 : “ < ” relation on Z.
R4 : “|” relation on Z+.

R5 : “|” relation on Z.

Solution.

Reflexive : R2, R4

Irreflexive : R1, R3

Symmetric : R1

Antisymmetric : R2, R3, R4

Transitive : R2, R3, R4, R5
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Note that R5 is not reflexive because (0, 0) 6∈ R5; it is not antisymmetric because for any integer a,

a|−a and −a|a, but a 6= −a. Observe that R5 is an example of a relation that is neither symmetric

nor antisymmetric.

Equivalence Relations

A relation R on a set A is an equivalence relation if and only if it is reflexive, symmetric and

transitive.

Prove: Let A be the set of all strings of English letters. Suppose that R is the relation on the set

A such that aR b if and only if l(a) = l(b), where l(x) is the length of the string x. Prove that R

is an equivalence relation.

Solution: To show that R is an equivalence relation, we need to prove that R is reflexive, sym-

metric, and transitive.

• Reflexive: Let a be an arbitrary string in A. Note that l(a) = l(a), and hence aRa. This

shows that R is reflexive.

• Symmetric: Let a, b be arbitrary elements in A. Assume (a, b) ∈ R. Since aRb, this means

that l(a) = l(b). Hence l(b) = l(a), so bRa. This shows that R is symmetric.

• Transitive: Let a, b, c be arbitrary elements in A. Assume that (a, b), (b, c) ∈ R. Thus

l(a) = l(b) and l(b) = l(c), which implies that l(a) = l(c). Hence aR c and R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

Operations on Relations

Since relations are sets, we can take a relation or a pair of relations and produce a new relation

using set operations.

Examples:

• Let “>” be the greater than relation on the set of integers. Let “<” be the less than relation

on the set of integers.

Then “>” ∪ “<” = “6=”

• Let “≥” be the greater than or equal relation on the set of integers. Let “=” be the equal

relation on the set of integers.

Then “≥” \ “=” = “>”.
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Functions

Let A and B be sets. A function from A to B is a relation, f , from A to B such that for all a ∈ A

there is exactly one b ∈ B such that (a, b) ∈ f .

Here are some definitions:

• If (a, b) ∈ f , then we write b = f(a).

• A function from A to B is also called a mapping from A to B and we write it as f : A→ B.

• The set A is called the domain of f and the set B the codomain.

• If a ∈ A then the element b = f(a) is called the image of a under f . The range of f , denoted

by Ran(f) is the set

Ran(f) = {b ∈ B | ∃a ∈ A s.t. b = f(a)}

• Two functions are equal if they have the same domain, have the same codomain, and map

each element of the domain to the same element in the codomain.

Examples:

• Some functions are ones that a familiar to ones that you may have studied before. For

example: f1 : Z→ Z, f1(x) = x2

• Functions need not have such a clean definition. For example:

Let A = {1, 2, 3} and B = {a, b}. Then there can be a function f2 : A → B, such that

f2(1) = b, f2(2) = a, f2(3) = b.

Let A and B be sets. Let f : A→ B be a function.

• f is said to be injective, iff ∀x, y ∈ A, x 6= y =⇒ f(x) 6= f(y).

Sometimes it is informative to look at its contrapositive statement:

∀x, y ∈ A, f(x) = f(y) =⇒ x = y.

• f is called surjective, iff ∀b ∈ B, ∃a ∈ A, f(a) = b.

• f is a bijection, iff it is both surjective and injective.

Prove: Let f : Z→ Z, such that f(x) = x + 1. Prove that f is bijective.

To prove that f is bijective, we wish to show that it is injective and surjective.

• Injective: Let x and y be arbitrary elements in A. Assume that x 6= y. Then f(x) =

x + 1 6= y + 1 = f(y). Since f(x) 6= f(y), then we have shown that f is injective.
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• Surjective: Let x be an arbitrary element in B. Let y = x−1. Note that f(y) = f(x−1) =

x. Hence, since there is a y ∈ Z such that f(y) = x, we have that f is surjective.

Since we have shown that the function is injective and surjective, we have that it is bijective.

Injection and Surjection Rule

The Injection Rule

Let A and B be two finite sets. If there is an injective function from A to B, then |A| ≤ |B|.

We can see this as follows. Since each element in A is mapped to a distinct element in B, this

means that |A| = |Ran(f)|. Further, since Ran(f) ⊆ B, we know that |Ran(f)| ≤ |B|. Therefore,

|A| ≤ |B|.

The Surjection Rule

Let A and B be two finite sets. If there is an surjective function from A to B, then |A| ≥ |B|.

We can see this as follows. Suppose for the sake of contradiction that there is a surjective function,

but |A| < |B|. Note that since each element in A is mapped to exactly one element in B, it

must be that |A| ≥ |Ran(f)|. Since |Ran(f)| ≤ |A| and |A| < |B|, we have that |Ran(f)| < |B|.
Since Ran(f) ⊆ B and |Ran(f)| < |B|, it must be that Ran(f) ⊂ B. Therefore, we have that

B \Ran(f) 6= ∅. In other words, there is an element in B such that it is not mapped onto by the

function f . This contradicts the assumption that f is surjective.


