CMSC 250: Discrete Structures
Summer 2017

Lecture 6 - Outline
June 8, 2017

Relations and Functions

Problem: Let A and B be arbitrary sets. How many
different relations are there from a set A to a set B?

Solution: Note that all such relations are subsets of the
set A x B. In other words, the question is equivalent to
asking the question, how many subsets are there of the
set A x B.

Recall that 2(4%B) is the set of all subsets of A x B. The
cardinality of the powerset is

Recall the following properties on relations:
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Let R be a relation defined on set A. We say that R

is
o reflexive, if for all z € A, (z,z) € R.
o irreflexive, if for all x € A, (z,2) € R.

o symmetric, if for all z,y € A, (z,y) € R —
(y,x) € R.

e antisymmetric, ifforallz,y € A, x Ryandy Rz —
T =1y.

o transitive, if for all x,y,z € A, r Ryand y Rz —
TRz

Problem: What are the properties of the following re-
lations?

R, : “is a sibling of” relation on the set of all people.
Ry : “ <7 relation on Z.

R3 : “ <7 relation on Z.

Ry : “” relation on Z*.

Rs : “|” relation on Z.
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Solution.

Reflexive : Ry, Ry
Irreflexive : Ry, R3
Symmetric : Ry
Antisymmetric : Ro, R3, Ry
Transitive : Ry, R3, R4, Rs

Note that Rj is not reflexive because (0,0) ¢ Rs; it is not
antisymmetric because for any integer a, a| —a and —ala,
but @ # —a. Observe that Rj is an example of a relation
that is neither symmetric nor antisymmetric.

Equivalence Relations

A relation R on a set A is an equivalence relation if and
only if it is reflexive, symmetric and transitive.

Prove: Let A be the set of all strings of English letters.
Suppose that R is the relation on the set A such that a Rb
if and only if I(a) = I(b), where [(x) is the length of the
string x. Prove that R is an equivalence relation.
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Solution: To show that R is an equivalence relation, we

need to prove that R is reflexive, symmetric, and transi-

tive.

e Reflexive: Let a be an arbitrary string in A.

Note that [(a) = l(a), and hence a Ra. This shows
that R is reflexive.

Symmetric: Let a,b be arbitrary elements in
A. Assume (a,b) € R. Since aRb, this means that
[(a) = I(b). Hence l(b) = l(a), so bRa. This shows
that R is symmetric.

Transitive: Let a,b, ¢ be arbitrary elements in A.
Assume that (a,b), (b,c) € R. Thus l(a) = l(b) and
[(b) = I(¢), which implies that I(a) = I(c). Hence
a Rc and R is transitive.

Since R is reflexive, symmetric, and transitive, it is an

equivalence relation.
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Operations on Relations

Since relations are sets, we can take a relation or a pair
of relations and produce a new relation using set opera-
tions.

Examples:

e Let “>” be the greater than relation on the set of
integers. Let “<” be the less than relation on the
set, of integers.

Then CL>’7 U L(<77 — (4#77

e Let “>” be the greater than or equal relation on
the set of integers. Let “=” be the equal relation
on the set of integers.

Then 44257 \ [ — u>77.
Functions

Let A and B be sets. A function from A to B is a
relation, f, from A to B such that for all a € A there is
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exactly one b € B such that (a,b) € f.

Here are some definitions:

If (a,b) € f, then we write b = f(a).

A function from A to B is also called a mapping
from A to B and we write it as f: A — B.

The set A is called the domain of f and the set B
the codomain.

If a € A then the element b = f(a) is called the
image of a¢ under f. The range of f, denoted by
Ran(f) is the set

Ran(f)={be B|Jac As.t. b= f(a)}

Two functions are equal if they have the same do-
main, have the same codomain, and map each el-
ement of the domain to the same element in the
codomain.

Examples:
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e Some functions are ones that a familiar to ones that
you may have studied before. For example: f; :
7. — 7, fi(z) = 2*

e Functions need not have such a clean definition.
For example:

Let A = {1,2,3} and B = {a,b}. Then there can
be a function f» : A — B, such that fy(1) = b,
f2(2) = a, f2(3) =0b.

Let A and B be sets. Let f : A — B be a function.

e f is said to be injective, iff Vx,y € A,z £y —

flx) # f(y).

Sometimes it is informative to look at its contra-

positive statement:
Ve,y € A, f(z) = fly) = z=uy.
e f is called surjective, iff Vb € B,3a € A, f(a) = 0.

e f is a bijection, iff it is both surjective and injec-

tive.
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Prove: Let f :Z — Z, such that f(x) = x + 1. Prove
that f is bijective.

To prove that f is bijective, we wish to show that it is
injective and surjective.

e Injective: Let x and y be arbitrary elements in
A. Assume that © # y. Then f(z) = z+ 1 #

y+1 = f(y). Since f(z) # f(y), then we have
shown that f is injective.

e Surjective: Let x be an arbitrary element in B.
Let y = x — 1. Note that f(y) = f(x — 1) = .
Hence, since there is a y € Z such that f(y) = =z,
we have that f is surjective.

Since we have shown that the function is injective and
surjective, we have that it is bijective.

Injection and Surjection Rule

The Injection Rule
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Let A and B be two finite sets. If there is an injective
function from A to B, then |A| < |B].

We can see this as follows. Since each element in A is
mapped to a distinct element in B, this means that |A| =
|Ran(f)|. Further, since Ran(f) C B, we know that
|Ran(f)| < |B|. Therefore, |A| < |B].

The Surjection Rule

Let A and B be two finite sets. If there is an surjective
function from A to B, then |A| > |B].

We can see this as follows. Suppose for the sake of contra-
diction that there is a surjective function, but |A| < |B].
Note that since each element in A is mapped to exactly
one element in B, it must be that |A| > |Ran(f)|. Since
|Ran(f)| < |A| and |A| < |B|, we have that |Ran(f)| <
|B|. Since Ran(f) C B and |Ran(f)| < |B|, it must be
that Ran(f) C B. Therefore, we have that B\ Ran(f) #
&. In other words, there is an element in B such that it
is not mapped onto by the function f. This contradicts
the assumption that f is surjective.



