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Functions and an Introduction to Count-

ing

Inverse Functions

Let f : A→ B be a bijection. The inverse function of f ,

denoted f−1, is the function that maps an element b ∈ B

to the unique element a ∈ A such that f(a) = b. Hence

f−1(b) = a when f(a) = b.

Note that if f is not bijective then its inverse does not

exist.
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Function Composition

Let f : A → B and g : B → C be functions. The

composition of the function g with f is the function

g ◦ f : A→ C, defined by

∀x ∈ A, (g ◦ f)(x) = g(f(x))

Problem: Let A = {a, b, c} and B = {1, 2, 3}. Let

g : A→ A be such that g(a) = b, g(b) = c, and g(c) = a.

Let f : A → B be such that f(a) = 3, f(b) = 2, and

f(c) = 1. What is f ◦ g and g ◦ f?

Solution: The composition function f ◦ g is as follows:

(f ◦ g)(a) = f(g(a)) = f(b) = 2, (f ◦ g)(b) = f(g(b)) =

f(c) = 1, and (f ◦ g)(c) = f(g(c)) = f(a) = 3.

(g ◦ f) is not defined as the range of f is not a subset of

the domain of g.

Problem: Let f : Z → Z be f(x) = 2x + 3. Let g :

Z → Z be g(x) = 3x + 2. What is the composition of f

with g? What is the composition of g with f?
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Solution: (f ◦g)(x) = f(g(x)) = 2(3x+2)+3 = 6x+7.

Similarly, (g ◦ f)(x) = g(f(x)) = 3(2x+ 3) + 2 = 6x+ 11.

This example shows that commutative law does not apply

to the composition of functions.

Prove: Let f : A→ B and g : B → C be two functions.

Prove that:

i. if f and g are surjective then so is g ◦ f .

ii. if f and g are injective then so is g ◦ f .

iii. if f and g are bijective then so is g ◦ f .

Solution:

i. Let c ∈ C be arbitrary. Since g is surjective, there

must be a b ∈ B such that g(b) = c. Since f is

surjective, there must be a a ∈ A such that f(a) =

b. Thus (g ◦ f)(a) = g(f(a)) = g(b) = c. This

proves that g ◦ f is surjective.

ii. Let a, a′ ∈ A be arbitrary elements such that (g ◦
f)(a) = (g ◦ f)(a′). This means that g(f(a)) =
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g(f(a′)). Since g is injective we have f(a) = f(a′).

Then since f is injective, we have a = a′.

iii. The bijectivity of (g◦f) follows from the injectivity

and surjectivity of (g ◦ f).

Injection, Surjection and Bijection Rule

The Injection Rule

Let A and B be two finite sets. If there is an injective

function from A to B, then |A| ≤ |B|.

We can see this as follows. Since each element in A is

mapped to a distinct element in B, this means that |A| =
|Ran(f)|. Further, since Ran(f) ⊆ B, we know that

|Ran(f)| ≤ |B|. Therefore, |A| ≤ |B|.

Note that we can further show that |A| < |B| if we can

show that there is some element b ∈ B that is not mapped

onto by the injective function.

The Surjection Rule

Let A and B be two finite sets. If there is a surjective
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function from A to B, then |A| ≥ |B|.

We can see this as follows. Suppose for the sake of contra-

diction that there is a surjective function, but |A| < |B|.
Note that since each element in A is mapped to exactly

one element in B, it must be that |A| ≥ |Ran(f)|. Since

|Ran(f)| ≤ |A| and |A| < |B|, we have that |Ran(f)| <
|B|. Since Ran(f) ⊆ B and |Ran(f)| < |B|, it must be

that Ran(f) ⊂ B. Therefore, we have that B \Ran(f) 6=
∅. In other words, there is an element in B such that it

is not mapped onto by the function f . This contradicts

the assumption that f is surjective.

Note that we can further show that |A| > |B| if we can

show that there is some element b ∈ B that is mapped

onto by two elements in A by the surjective function..

The Bijection Rule

Let A and B be two finite sets. If there is a bijective

function from A to B, then |A| = |B|.

We can see this as follows. Since a bijective function is

one that is injective and surjective, we can apply both

the injection and surjection rules. Therefore, we know
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that |A| ≥ |B| and |A| ≤ |B|. This is only possible when

|A| = |B|.

What is very cool about these rules is that it allows us to

determine the relative magnitudes of two different sets,

even if we do not know how to explicitly count them

yet.

Problem: Prove that there are more strings of length n

made from the English alphabet with repeat than strings

of length n made from the English alphabet without re-

peat. You may assume that 2 ≤ n ≤ 26.

Solution: Let A be the set of all strings of length n

made from the English alphabet with repeat. Let B be

the set of all strings of length n made from the English

alphabet without repeat. We want to show that |A| >
|B|. We do so by constructing an injective function from

B to A, and then showing that there is one element a ∈ A

that is not mapped onto.

Consider the following function f : B → A, where f

maps each element in B onto its identical element in A.
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We note that f is a function, since each element in B is

mapped to exactly one element in A.

We also note that f is injective. Let x, y ∈ B be arbitrary

strings of length n made from English letters without

repeat. Suppose x 6= y. Since f(x) = x 6= y = f(y), we

have that f(x) 6= f(y).

By the injection rule, we have that |B| ≤ |A|. We now

show that |B| < |A|. Consider the string of the letter

a repeated n times. This element is in A, but is not

mapped onto by any element in B by the definition of f .

Hence, we have that |B| < |A|.

Problem: Prove that there are more squares on an

8× 8 chessboard than a 4× 16 chessboard.

Solution: Let A be the set of all squares on the 8 × 8

chessboard, and B be the set of all squares on the 4× 16

chessboard. We wish to show that |A| > |B|.

Let us consider the following function f : B → A. For

squares entirely within the top 4× 8 section of the 4× 16

board, the function maps them onto the same position on

the 4× 8 section of the left hand side of the 8× 8 board.
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For squares entirely within the bottom 4 × 8 section of

the 4× 16 board, the function maps them onto the same

position on the 4× 8 section of the right hand side of the

8× 8 board.

The last type of square to consider are those that are

both on the top and bottom 4× 8 sections of the 4× 16

board. Note that any such overlapping square can only

be in the center 4× 6 region of the 4× 16 board. For any

squares in this section that overlap the two halves of the

board, let the function map them to an equivalent (but

rotated) 6 × 4 region in the middle of the 8 × 8 board,

such that the horizontal line on the 4× 16 board is lined

up with the vertical line on the 8× 8 board.

We note that f is clearly a function, since it maps squares

in B to exactly one square in A.

Let us now show that f is injective. Let x and y be two

arbitrary squares in B, such that x 6= y. We want to

show that f(x) 6= f(y).

There are a few cases here:

• Case 1: x and y are on the same half of the
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4 × 16 board

Without loss of generality, let x and y both be on

the top half of the 4 × 16 board. Note that since

we map x and y to their respective position in the

4× 8 section on the left of the 8× 8 board, we have

that f(x) 6= f(y), since x 6= y.

• Case 2: x and y are on different halves of the

4 × 16 board

Without loss of generality, let x be on the top half

on the board, and y be on the bottom half of the

board. Since f(x) is on the left half of the 8 × 8

board, and f(y) is on the right half of the 8 × 8

board, we have that f(x) 6= f(y).

• Case 3: exactly one of x and y overlap be-

tween the top and bottom halves ofthe 4 ×
16 board

Without loss of generality, let x be the overlapping

square. Again without loss of generality, let y be

on the top half of the 4× 16 board.

Since x is an overlapping square, f(x) must be a
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square that overlaps the center vertical line that

divides that left and right boards in the 8×8 board.

Since y is not an overlapping square and is entirely

in the top half of the 4 × 16 board, f(y) must be

entirely within the left half of the 8× 8 board.

Since f(x) overlaps and f(y) does not, it must be

that f(x) 6= f(y).

• Case 4: both of x and y overlap between the

top and bottom halves ofthe 4 × 16 board

Note that since we map x and y to their respective

position in the 6 × 4 section in the middle of the

8×8 board, we have that f(x) 6= f(y), since x 6= y.

Since we have shown that there is an injective function

f : B → A, we have that |B| ≤ |A|.

Next, we wish to show that |B| < |A| by showing that

there is an element in A that is not mapped by f . One

such element is the 8 × 8 square. This clearly is not

mapped to by f , since there are no 8 × 8 squares in

B.
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Counting

Counting is a part of combinatorics, an area of mathe-

matics which is concerned with the arrangement of ob-

jects of a set into patterns that satisfy certain constraints.

We will mainly be interested in the number of ways of ob-

taining an arrangement, if it exists.

In this class, we will often refer to such arrangements as

outcomes. This keeps us in line with the standard termi-

nology used when we go ahead to study probability.

Outcomes and Outcome Spaces

An outcome is one possible arrangement that satisfies

the constraints given. These outcomes are normally de-

noted with the Greek letter ω.

An outcome space is a set containing all possible out-

comes. The outcome space is normally denoted Ω.

Considering the outcomes of a problem can often help to

open the problem up. We will use the concept of out-

comes throughout counting and probability.
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Multiplication Rule. If the process of constructing

outcomes can be broken down into k steps, then the to-

tal number of such outcomes can be counted as follows.

Suppose:

• the first step can be performed in n1 ways,

• the second step can be performed in n2 ways, re-

gardless of how the first step was performed,
...

• the kth step can be performed in nk ways, regardless

of how the preceding steps were performed, then

then the total number of outcomes that can be con-

structed is n1 · n2 · · ·nk.

To apply the multiplication rule think of outcomes that

you are trying to count as the output of a multi-step

operation. The possible ways to perform a step may de-

pend on how the preceding steps were performed, but the

number of ways to perform each step must be constant

regardless of the action taken in prior steps.

Problem: A local deli that serves sandwiches offers a
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choice of three kinds of bread and five kinds of filling.

How many different kinds of sandwiches are available?

Solution: Let us consider what an outcome looks like

for this problem. One way of defining an outcome would

be an ordered pair of the format: (Type of bread, Type

of filling). One example outcome in this format would be

(Whole Wheat, Chicken).

With this definition of an outcome, the outcome space

Ω = {(Whole Wheat, Chicken), (Plain, Ham), (Whole Wheat, Ham),

. . . }.

We wish to find |Ω|.

Let us think of how we construct an outcome, i.e. a

sandwich, for this problem. We propose the following

steps:

Step 1. Choose the bread - 3 ways.

Step 2. Choose the filling - 5 ways.

Step 1 can be done in 3 ways and Step 2 can be done

in 5 ways. From the multiplication rule it follows that

the number of available sandwich offerings is 3 × 5 =
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15.

Example. Three officers - a president, a treasurer, and

a secretary - are to be chosen from among four people:

Alex, Bob, Cat, and Dan. Suppose that for various rea-

sons, Alex cannot be the president and either Cat or Dan

must be the secretary. In how many ways can the officers

be chosen?

Solution. Attempt 1. A set of three officers can be

formed as follows.

Step 1. Choose the president.

Step 2. Choose the treasurer.

Step 3. Choose the secretary.

There are 3 ways to do Step 1. There are 3 ways of doing

Step 2 (all except the person chosen in Step 1), and 2

ways of doing Step 3 (Cat or Dan). By multiplication

rule, the number of different ways of choosing the officers

is 3× 3× 2 = 18.
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The above solution is incorrect because the number of

ways of doing Step 3 depends upon the outcome of Steps

1 and 2 and hence the multiplication rule cannot be ap-

plied. For example, if Cat was chosen to be the president

in Step 1, and Alex was chosen to be the treasurer in

Step 2, then there would be only one way to choose the

secretary (it must be Dan)!

Attempt 2. A set of three officers can be formed as fol-

lows.

Step 1. Choose the secretary.

Step 2. Choose the president.

Step 3. Choose the treasurer.

Step 1 can be done in 2 ways (Cat or Dan). Step 2 can be

done in 2 ways (Alex cannot be the president and the per-

son chosen in Step 1 cannot be the president). Step 3 can

be done in 2 ways (either of the two remaining people can

be the treasurer). By multiplication rule, the numberof

ways in which the officers can be chosen is 2× 2× 2 = 8.

From the previous example we learn that there may not
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be a fixed order in which the operations have to be per-

formed, and by changing the order a problem may be

more readily solved by the multiplication rule. A rule of

thumb to keep in mind is to make the most restrictive

choice first.

Catalog of LATEXCommands

g ◦ f - g \circ f f−1 - f^{-1}

ω - \omega Ω - \Omega


