Problem 1. Assume you have a necklace of stones. Some of the stones have positive value and some
have negative value. You have the opportunity to snip the necklace in two places (creating two
bands) and weld the endpoints of one of the two bands back into a necklace. You would like
your new necklace to be as valuable as possible. You can assume the necklace has $n$ stones
with values $v[0], v[1], \ldots, v[n - 1]$.

(a) Give an algorithm to find the value of the new necklace. If all of the stones have negative
value your answer should be 0. Make your algorithm as clean and elegant as possible.

(b) Give an algorithm to determine where you should snip the original necklace (not just its
value). Make your algorithm as clean and elegant as possible. If all of the values are
positive you should not snip and your algorithm should print:
   Do not snip.
   If all of the values are negative you should not snip and your algorithm should print:
   Throw necklace away.
   If possible the algorithm should determine these two situations without explicitly checking
   for them.