CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with regular expressions
- **Parser** converts tokens into an **AST** (abstract syntax tree) based on a context free grammar
Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.
- Tokens determined with regular expressions
 - Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*
 - Non-negative integers match [0-9]+
 - Etc.
- Scanner typically ignores/eliminates whitespace
A Scanner in OCaml

type token =
 Tok_Num of char
| Tok_Sum
| Tok_END

let tokenize (s:string) = ...
 (* returns token list *)
;;

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+
let tokenize str =
 let rec tok pos s =
 if pos >= String.length s then
 [Tok_END]
 else if (Str.string_match re_num s pos) then
 let token = Str.matched_string s in
 (Tok_Num token.[0])::(tok (pos+1) s)
 else if (Str.string_match re_add s pos) then
 Tok_Sum::(tok (pos+1) s)
 else
 raise (IllegalExpression "tokenize")
in
 tok 0 str

Uses Str library module for regexps

tokenize "1+2" =
 [Tok_Num '1';
 Tok_Sum;
 Tok_Num '2';
 Tok_END]
Implementing Parsers

- Many efficient techniques for parsing
 - LL(k), SLR(k), LR(k), LALR(k)...
 - Take CMSC 430 for more details
- One simple technique: recursive descent parsing
 - This is a top-down parsing algorithm
- Other algorithms are bottom-up
Top-Down Parsing (Intuition)

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E \; ; \; L \mid \varepsilon \]

(Assume: `id` is variable name, `n` is integer)

Show parse tree for
\[\{ x = 3 ; \{ y = 4 ; \} ; \} \]
Bottom-up Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
BU Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)

Example grammar

- $S \rightarrow aA$, $A \rightarrow Bc$, $B \rightarrow b$

Example parse

- $abc \Rightarrow aBc \Rightarrow aA \Rightarrow S$
- Derivation happens in reverse

Complicated to use; requires tool support

- Bison, yacc produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table
- Shift-reduce parsers handle more grammars
 - Error messages may be confusing
- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

Goal

• Can we “parse” a string – does it match our grammar?
 ➢ We will talk about constructing an AST later

Approach: Perform parse

• Replace each non-terminal A by the rhs of a production
 A → rhs

• And/or match each terminal against token in input

• Repeat until input consumed, or failure
Recursive Descent Parsing (cont.)

- At each step, we'll keep track of two facts
 - What grammar element are we trying to match/expand?
 - What is the lookahead (next token of the input string)?

- At each step, apply one of three possible cases
 - If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
 - If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
 - Otherwise fail with a parsing error
Parsing Example

E → id = n | { L }
L → E ; L | ε

• Here n is an integer and id is an identifier

One input might be

• \{ x = 3; \{ y = 4; \}; \}
• This would get turned into a list of tokens
 \{ x = 3 ; \{ y = 4 ; \} ; \}
• And we want to turn it into a parse tree
Parsing Example (cont.)

\[
\begin{align*}
E & \rightarrow \text{id} = n \mid \{ L \} \\
L & \rightarrow E ; L \mid \varepsilon
\end{align*}
\]

\{ x = 3 ; \{ y = 4 ; \} ; \}

Lookahead
Recursive Descent Parsing (cont.)

- Key step: Choosing the right production
- Two approaches
 - Backtracking
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - Predictive parsing (what we will do)
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
Selecting a Production

Motivating example

- If grammar $S \rightarrow xyz \mid abc$ and lookahead is x
 - Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
- If grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - If lookahead is x, select $S \rightarrow A$, since A can derive string beginning with x

In general

- Choose a production that can derive a sentential form beginning with the lookahead
- Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

- First(\(\gamma \)), for any terminal or nonterminal \(\gamma \), is the set of initial terminals of all strings that \(\gamma \) may expand to
- We’ll use this to decide which production to apply

Example: Given grammar

\[
S \rightarrow A \mid B \\
A \rightarrow x \mid y \\
B \rightarrow z
\]

- First(A) = \{ x, y \} since First(x) = \{ x \}, First(y) = \{ y \}
- First(B) = \{ z \} since First(z) = \{ z \}

So: If we are parsing \(S \) and see \(x \) or \(y \), we choose \(S \rightarrow A \); if we see \(z \) we choose \(S \rightarrow B \)
Calculating First(γ)

- For a terminal a
 - First(a) = { a }

- For a nonterminal N
 - If N → ε, then add ε to First(N)
 - If N → α₁ α₂ ... αₙ, then (note the αᵢ are all the symbols on the right side of one single production):
 - Add First(α₁α₂ ... αₙ) to First(N), where First(α₁α₂ ... αₙ) is defined as
 - First(α₁) if ε ∉ First(α₁)
 - Otherwise (First(α₁) – ε) ∪ First(α₂ ... αₙ)
 - If ε ∈ First(αᵢ) for all i, 1 ≤ i ≤ k, then add ε to First(N)
First() Examples

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

First(id) = \{ id \}
First("=") = \{ "=" \}
First(n) = \{ n \}
First("{")= \{ "{" \}
First("}"")= \{ "}" \}
First(";")= \{ ";" \}
First(E) = \{ id, "{" \}
First(L) = \{ id, "{" , \varepsilon \}
Quiz #1

Given the following grammar:

What is First(S)?

A. {a}
B. {b, c}
C. {b}
D. {c}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]

What is \textbf{First}(B)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

What is First(B)?
A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]
Quiz #3

Given the following grammar:

What is $\text{First}(A)$?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(A)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}

Note:
First(B) = \{b\}
First(C) = \{c, \varepsilon\}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok a`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

The body of `parse_N` for a nonterminal `N` does the following:

- Let `N → β_1 | ... | β_k` be the productions of `N`:
 - Here `β_i` is the entire right side of a production - a sequence of terminals and nonterminals.

- Pick the production `N → β_i` such that the lookahead is in `First(β_i)`:
 - It must be that `First(β_i) ∩ First(β_j) = Ø` for `i ≠ j`.
 - If there is no such production, but `N → ε` then return.
 - Otherwise fail with a parse error.

- Suppose `β_i = α_1 α_2 ... α_n`. Then call `parse_α_1(); ... ; parse_α_n()` to match the expected right-hand side, and return.
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - First(xyz) = \{ x \}, First(abc) = \{ a \}

- Parser

```ocaml
let parse_S () =
  if lookahead () = "x" then (* S \rightarrow xyz *)
    (match_tok "x";
     match_tok "y";
     match_tok "z")
  else if lookahead () = "a" then (* S \rightarrow abc *)
    (match_tok "a";
     match_tok "b";
     match_tok "c")
  else raise (ParseError "parse_S")
```
Another Example Parser

- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - First(A) = \{ x, y \}, First(B) = \{ z \}

Parser:

```ocaml
let rec parse_S () =
  if lookahead () = "x" ||
      lookahead () = "y" then
    parse_A () (* S → A *)
  else if lookahead () = "z" then
    parse_B () (* S → B *)
  else raise (ParseError "parse_S")

and parse_A () =
  if lookahead () = "x" then
    match_tok "x" (* A → x *)
  else if lookahead () = "y" then
    match_tok "y" (* A → y *)
  else raise (ParseError "parse_A")

and parse_B () = ...
```

Syntax for mutually recursive functions in OCaml – parse_S and parse_A and parse_B can each call the other.
Example

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

First(E) = \{ id, "{" \}

Parser:

```ocaml
let rec parse_E () =
  if lookahead () = "id" then
    (* E \rightarrow id = n *)
    (match_tok "id";
     match_tok ";";
     match_tok "n")
  else if lookahead () = "{" then
    (* E \rightarrow \{ L \} *)
    (match_tok "{";
     parse_L ();
     match_tok "}")
  else raise (ParseError "parse_A")
  and parse_L () =
    if lookahead () = "id"
    || lookahead () = "{" then
      (* L \rightarrow E ; L *)
      (parse_E ();
       match_tok ";";
       parse_L ()
    )
    else
      (* L \rightarrow \varepsilon *)
      ()
```
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we’ll consider ASTs later)

Examples

- Grammar

 S → xyz
 S → abc

- String “xyz”

 parse_S ()
 match_tok “x” /
 match_tok “y” x y z
 match_tok “z”

- Grammar

 S → A | B
 A → x | y
 B → z

- String “x”

 parse_S ()
 parse_A ()
 match_tok “x” x
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use

- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ε
 - Possible infinite recursion

- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar \(E \rightarrow ab \mid ac \)
- \(\text{First}(ab) = a \)
- \(\text{First}(ac) = a \)
 Parser cannot choose between RHS based on lookahead!

Parser fails whenever \(A \rightarrow \alpha_1 \mid \alpha_2 \) and
- \(\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon \) or \(\emptyset \)

Solution
- Rewrite grammar using left factoring
Left Factoring Algorithm

Given grammar
- \(A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta \)

Rewrite grammar as
- \(A \rightarrow xL \mid \beta \)
- \(L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \)

Repeat as necessary

Examples
- \(S \rightarrow ab \mid ac \Rightarrow S \rightarrow aL \quad L \rightarrow b \mid c \)
- \(S \rightarrow abcA \mid abB \mid a \Rightarrow S \rightarrow aL \quad L \rightarrow bcA \mid bB \mid \epsilon \)
- \(L \rightarrow bcA \mid bB \mid \epsilon \Rightarrow L \rightarrow bL' \mid \epsilon \quad L' \rightarrow cA \mid B \)
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to chose between productions

- Example
 - Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```ml
let parse_E () =
    match_tok "a"; (* common prefix *)
    if lookahead () = "+" then (* E → a+b *)
      (match_tok "+";
       match_tok "b")
    else if lookahead () = "*" then (* E → a*b *)
      (match_tok "*";
       match_tok "b")
    else () (* E → a *)
```
Left Recursion

Consider grammar $S \rightarrow Sa \mid \varepsilon$

- Try writing parser

```ml
let rec parse_S () =
  if lookahead () = "a" then
    (parse_S ();
     match_tok "a") (* S -> Sa *)
  else ()
```

- Body of `parse_S ()` has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Right Recursion

Consider grammar $S \rightarrow aS \mid \varepsilon$

- Try writing parser

```plaintext
let rec parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
            parse_S () (* $S \rightarrow aS$ *))
    else ()
```

- Will parse_S() infinite loop?
 - Invoking match_tok will advance lookahead, eventually stop

- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

Given grammar
- \(A \to A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta \)
 - \(\beta \) must exist or no derivation will yield a string

Rewrite grammar as (repeat as needed)
- \(A \to \beta L \)
- \(L \to \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \varepsilon \)

Replaces left recursion with right recursion

Examples
- \(S \to Sa \mid \varepsilon \) \(\Rightarrow S \to L \quad L \to aL \mid \varepsilon \)
- \(S \to Sa \mid Sb \mid c \) \(\Rightarrow S \to cL \quad L \to aL \mid bL \mid \varepsilon \)
What Does the following code parse?

```ocaml
let parse_S () =
    if lookahead () = "a" then
      (match_tok "a";
       match_tok "x";
       match_tok "y")
    else if lookahead () = "q" then
      match_tok "q"
    else
      raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #4

What Does the following code parse?

```
let parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     match_tok "x";
     match_tok "y")
  else if lookahead () = "q" then
    match_tok "q"
  else
    raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ()
  )
else if lookahead () = "q" then
  (match_tok "q";
   match_tok "p"
  )
else
  raise (ParseError "parse_S")
```

A. $S \rightarrow aS \mid qp$
B. $S \rightarrow a \mid S \mid qp$
C. $S \rightarrow aqSp$
D. $S \rightarrow a \mid q$
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ())
  else if lookahead () = "q" then
    (match_tok "q";
     match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. $S \rightarrow aS \mid qp$
B. $S \rightarrow a \mid S \mid qp$
C. $S \rightarrow aqSp$
D. $S \rightarrow a \mid q$
Quiz #6

Can recursive descent parse this grammar?

\[
\begin{align*}
S &\rightarrow aBa \\
B &\rightarrow bC \\
C &\rightarrow \varepsilon \mid Cc
\end{align*}
\]

A. Yes
B. No
Quiz #6

Can recursive descent parse this grammar?

\[
\begin{align*}
S & \rightarrow aBa \\
B & \rightarrow bC \\
C & \rightarrow \varepsilon | Cc
\end{align*}
\]

A. Yes
B. No
(due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.
Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language
 - Note that grammars describe trees
 - So do OCaml datatypes, as we have seen already
 - $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way:

- `match_tok a` returns an AST node (leaf) for `a`
- `parse_A` returns an AST node for `A`
 - AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

```ml
let rec parse_S () =
  if lookahead () = "a" then
    let n1 = match_tok "a" in
    let n2 = parse_A () in
    Node(n1,n2)
  else raise ParseError "parse_S"
```

```ml
S
/   \
a A
|     |
```
The Compilation Process

Lexing

Regexps
DFAs

Parsing

CFGs
PDAs

AST

(may not actually be constructed)

Intermediate Code Generation

Optimization

Compiler

source program

target program