CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment
 \[e \Rightarrow v \]
 - Says “\(e \) evaluates to \(v \)”
 - \(e \): expression in Micro-OCaml
 - \(v \): value that results from evaluating \(e \)
Definitional Interpreter

- It turns out that the rules for judgment $e \Rightarrow v$ can be easily turned into idiomatic OCaml code
 - The language’s expressions e and values v have corresponding OCaml datatype representations exp and $value$
 - The semantics is represented as a function

$$eval: exp \rightarrow value$$

- This way of presenting the semantics is referred to as a definitional interpreter
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

- \(e, x, n\) are meta-variables that stand for categories of syntax
 - \(x\) is any identifier (like \(z, y, \text{foo}\))
 - \(n\) is any numeral (like \(1, 0, 10, -25\))
 - \(e\) is any expression (here defined, recursively!)

- **Concrete syntax** of actual expressions in **black**
 - Such as \(\text{let}, +, z, \text{foo}, \text{in}, \ldots\)

\(::=\) and \(\mid\) are meta-syntax used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e \]

Examples

- **1** is a numeral \(n \) which is an expression \(e \)
- **1+z** is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)
- **let z = 1 in 1+z** is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - 1+z is an expression \(e \), and
 - **let x = e in e** is an expression \(e \)
Abstract Syntax = Structure

Here, the grammar for \(e \) is describing its abstract syntax tree (AST), i.e., \(e \)'s structure

\[
e ::= x | n | e + e | \text{let } x = e \text{ in } e
\]

corresponds to (in definitional interpreter)

```plaintext
type id = string

type num = int

type exp =
    | Ident of id (* x *)
    | Num of num (* n *)
    | Plus of exp * exp (* e+e *)
    | Let of id * exp * exp (* let x=e in e *)
```

Aside: Real Interpreters

Parser
Optional Static Analyzer (e.g., Type Checker)

Front End

Abstract Syntax Tree (AST), a kind of intermediate representation (IR)

Evaluator
the part we write in the definitional interpreter

Back End

Source \rightarrow \text{Interpreter} \rightarrow \text{Evaluator} \rightarrow Output

Input
Values

- An expression’s final result is a value. What can values be?

 \[v ::= n \]

- Just numerals for now
 - In terms of an interpreter’s representation:

 \[
 \text{type value} = \text{int}
 \]
 - In a full language, values \(v \) will also include booleans (\(\text{true}, \text{false} \)), strings, functions, ...
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

Judgments are just statements. We use rules to prove that the statement is true.

- $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true

- $\text{let foo}=1+2 \text{ in foo+5 } \Rightarrow 8$
- $\text{let f}=1+2 \text{ in let z}=1 \text{ in f+z } \Rightarrow 4$
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$

- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Here, $e_2\{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$
Rules of Inference

- We can use a more compact notation for the rules we just presented: rules of inference
 - Has the following format
 \[
 \begin{array}{c}
 H_1 \quad \ldots \quad H_n \\
 \hline
 C
 \end{array}
 \]
 - Says: if the conditions \(H_1 \ldots H_n \) (“hypotheses”) are true, then the condition \(C \) (“conclusion”) is true
 - If \(n=0 \) (no hypotheses) then the conclusion automatically holds; this is called an axiom

- We are using inference rules where \(C \) is our judgment about evaluation, i.e., that \(e \Rightarrow v \)
Lego Blocks and Lego Cars

P = 8.0 mm
= 5/6 x H
= 2.5 x h

h = 3.2 mm
= 1/3 x H
= 0.4 x P

2 x P = 0.2 mm
= 15.8 mm

H = 9.6 mm
= 3 x h
= 1.2 x P

P = 0.2 mm
= 7.8 mm
Rules of Inference: Num and Sum

1. Suppose \(e \) is a numeral \(n \)
 - Then \(e \) evaluates to itself, i.e., \(n \Rightarrow n \)

2. Suppose \(e \) is an addition expression \(e_1 + e_2 \)
 - If \(e_1 \) evaluates to \(n_1 \), i.e., \(e_1 \Rightarrow n_1 \)
 - If \(e_2 \) evaluates to \(n_2 \), i.e., \(e_2 \Rightarrow n_2 \)
 - Then \(e \) evaluates to \(n_3 \), where \(n_3 \) is the sum of \(n_1 \) and \(n_2 \)
 - I.e., \(e_1 + e_2 \Rightarrow n_3 \)
Rules of Inference: Let

- Suppose \(e \) is a let expression \(\text{let } x = e_1 \text{ in } e_2 \)
 - If \(e_1 \) evaluates to \(v \), i.e., \(e_1 \Rightarrow v_1 \)
 - If \(e_2\{v_1/x\} \) evaluates to \(v_2 \), i.e., \(e_2\{v_1/x\} \Rightarrow v_2 \)
 - Then \(e \) evaluates to \(v_2 \), i.e., \(\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \)
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 ➢ Goal: Show that \(\text{let } x = 4 \text{ in } x+3 \Rightarrow 7 \)
Derivations

\[\text{let } x = 4 \text{ in } x + 3 \Rightarrow 4 \Rightarrow 4 \Rightarrow 3 \Rightarrow 3 \Rightarrow 7 \text{ is } 4 + 3 \]

\[\text{let } x = \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \]

Goal: show that
\[\text{let } x = 4 \text{ in } x + 3 \Rightarrow 7 \]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)
\[
\begin{align*}
2 \Rightarrow 2 & \quad 3 + 8 \Rightarrow 11 \\
\hline \\
2 + (3 + 8) \Rightarrow 13
\end{align*}
\]

(b)
\[
\begin{align*}
3 \Rightarrow 3 & \quad 8 \Rightarrow 8 \\
\hline \\
3 + 8 \Rightarrow 11 \quad & \quad 2 \Rightarrow 2 \\
\hline \\
2 + (3 + 8) \Rightarrow 13
\end{align*}
\]

(c)
\[
\begin{align*}
8 \Rightarrow 8 & \\
3 \Rightarrow 3 \\
11 \text{ is } 3+8 \\
\hline \\
2 \Rightarrow 2 & \quad 3 + 8 \Rightarrow 11 \quad 13 \text{ is } 2+11 \\
\hline \\
2 + (3 + 8) \Rightarrow 13
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

$$2 + (3 + 8) \Rightarrow 13$$

(a)

$$
\begin{array}{c}
2 \Rightarrow 2 \\
3 + 8 \Rightarrow 11 \\
\hline
2 + (3 + 8) \Rightarrow 13
\end{array}
$$

(b)

$$
\begin{array}{c}
3 \Rightarrow 3 \\
8 \Rightarrow 8 \\
\hline
3 + 8 \Rightarrow 11 \\
2 \Rightarrow 2 \\
\hline
2 + (3 + 8) \Rightarrow 13
\end{array}
$$

(c)

$$
\begin{array}{c}
8 \Rightarrow 8 \\
3 \Rightarrow 3 \\
11 \text{ is } 3+8 \\
\hline
2 \Rightarrow 2 \\
3 + 8 \Rightarrow 11 \\
13 \text{ is } 2+11 \\
\hline
2 + (3 + 8) \Rightarrow 13
\end{array}
$$
Definitional Interpreter

The style of rules lends itself directly to the implementation of an interpreter as a recursive function

```ocaml
let rec eval (e:exp):value = 
    match e with
    | Ident x -> (* no rule *)
        failwith "no value"
    | Num n -> n
    | Plus (e1,e2) ->
        let n1 = eval e1 in
        let n2 = eval e2 in
        let n3 = n1+n2 in
        n3
    | Let (x,e1,e2) ->
        let v1 = eval e1 in
        let e2' = subst v1 x e2 in
        let v2 = eval e2' in v2
```
Derivations = Interpreter Call Trees

\[4 \Rightarrow 4 \quad 3 \Rightarrow 3 \quad 7 \text{ is } 4+3 \]

\[4 \Rightarrow 4 \quad 4+3 \Rightarrow 7 \]

\[\text{let } x = 4 \text{ in } x+3 \Rightarrow 7 \]

Has the same shape as the recursive call tree of the interpreter:

\[\text{eval Num } 4 \Rightarrow 4 \quad \text{eval Num } 3 \Rightarrow 3 \quad 7 \text{ is } 4+3 \]

\[\text{eval } (\text{subst } 4 \text{ "x"}) \]

\[\text{eval Num } 4 \Rightarrow 4 \quad \text{Plus} (\text{Ident} ("x"), \text{Num } 3) \Rightarrow 7 \]

\[\text{eval Let} ("x", \text{Num } 4, \text{Plus} (\text{Ident} ("x"), \text{Num } 3)) \Rightarrow 7 \]
Semantics Defines Program Meaning

- $e \Rightarrow v$ holds if and only if a \textit{proof} can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means $e \not\Rightarrow v$

- Proofs can be constructed bottom-up
 - In a goal-directed fashion

- Thus, function $\text{eval } e = \{v \mid e \Rightarrow v \}$
 - Determinism of semantics implies at most one element for any e

- So: Expression e means v
Environment-style Semantics

- The previous semantics uses substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

Mathematically, an environment is a partial function from identifiers to values

- If A is an environment, and x is an identifier, then $A(x)$ can either be …
- … a value (intuition: the variable has been declared)
- … or undefined (intuition: variable has not been declared)

An environment can also be thought of as a table

- If A is

<table>
<thead>
<tr>
<th>Id</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
</tr>
</tbody>
</table>

- then $A(x)$ is 0, $A(y)$ is 2, and $A(z)$ is undefined
Notation, Operations on Environments

- is the empty environment (undefined for all ids)
- If A is an environment then $A, x: v$ is one that extends A with a mapping from x to v
 - Sometimes just write $x: v$ instead of $\cdot, x: v$ for brevity
 - *NB.* if A maps x to some v', then that mapping is *shadowed* by the mapping $x: v$
- Lookup $A(x)$ is defined as follows
 - $(\cdot)(x) = \text{undefined}$
 - $(A, y: v)(x) = \begin{cases} v & \text{if } x = y \\ A(x) & \text{if } x <> y \text{ and } A(x) \text{ defined} \\ \text{undefined} & \text{otherwise} \end{cases}$
An environment is just a list of mappings, which are just pairs of variable to value - called an association list
Semantics with Environments

The environment semantics changes the judgment

\[e \Rightarrow v \]

to be

\[A; e \Rightarrow v \]

where \(A \) is an environment

- Idea: \(A \) is used to give values to the identifiers in \(e \)
- \(A \) can be thought of as containing declarations made up to \(e \)

Previous rules can be modified by

- Inserting \(A \) everywhere in the judgments
- Adding a rule to look up variables \(x \) in \(A \)
- Modifying the rule for \texttt{let} to add \(x \) to \(A \)
Environment-style Rules

\[
\begin{align*}
\text{A}(x) &= v \\
\text{A}; x &\Rightarrow v
\end{align*}
\]

Look up variable \(x \) in environment \(\text{A} \)

\[
\begin{align*}
\text{A}; n &\Rightarrow n
\end{align*}
\]

Extend environment \(\text{A} \) with mapping from \(x \) to \(v \)

\[
\begin{align*}
\text{A}; e1 &\Rightarrow v1 \\
\text{A}, x:v1; e2 &\Rightarrow v2
\end{align*}
\]

\[
\text{A}; \text{let } x = e1 \text{ in } e2 \Rightarrow v2
\]

\[
\begin{align*}
\text{A}; e1 &\Rightarrow n1 \\
\text{A}; e2 &\Rightarrow n2 \\
n3 &\text{ is } n1+n2
\end{align*}
\]

\[
\text{A}; e1 + e2 \Rightarrow n3
\]
let rec eval env e =
 match e with
 Ident x -> lookup env x
| Num n -> n
| Plus (e1,e2) ->
 let n1 = eval env e1 in
 let n2 = eval env e2 in
 let n3 = n1+n2 in
 n3
| Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
Quiz 2

What is a derivation of the following judgment?

\[\text{•; let } x=3 \text{ in } x+2 \Rightarrow 5 \]

(a)
\[
\begin{align*}
&x \Rightarrow 3 \\
&2 \Rightarrow 2 \\
&5 \text{ is } 3+2 \\
\hline
3 & \Rightarrow 3 \\
&x+2 \Rightarrow 5
\end{align*}
\]

(b)
\[
\begin{align*}
x:3; x & \Rightarrow 3 \\
&x:3; 2 \Rightarrow 2 \\
&5 \text{ is } 3+2 \\
\hline
\text{•; }&3 \Rightarrow 3 \\
x:3; & x+2 \Rightarrow 5
\end{align*}
\]

(c)
\[
\begin{align*}
x:2; x & \Rightarrow 3 \\
x:2; & 2 \Rightarrow 2 \\
&5 \text{ is } 3+2 \\
\hline
\text{•; }&3 \Rightarrow 3 \\
x:3; & x+2 \Rightarrow 5
\end{align*}
\]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)
\[\begin{align*}
x &\Rightarrow 3 & 2 &\Rightarrow 2 & \text{5 is } 3+2 \\
\hline
3 &\Rightarrow 3 & x+2 &\Rightarrow 5 \\
\hline
\text{let } x=3 \text{ in } x+2 &\Rightarrow 5
\end{align*}\]

(b)
\[\begin{align*}
x:3; x &\Rightarrow 3 & x:3; 2 &\Rightarrow 2 & \text{5 is } 3+2 \\
\hline
\cdot; 3 &\Rightarrow 3 & x:3; x+2 &\Rightarrow 5 \\
\hline
\cdot; \text{let } x=3 \text{ in } x+2 &\Rightarrow 5
\end{align*}\]

(c)
\[\begin{align*}
x:2; x\Rightarrow 3 & \quad x:2; 2\Rightarrow 2 & \text{5 is } 3+2 \\
\hline
\cdot; \text{let } x=3 \text{ in } x+2 &\Rightarrow 5
\end{align*}\]
Adding Conditionals to Micro-OCaml

\[
e ::= x | v | e + e | \text{let } x = e \text{ in } e \\
| \text{eq0 } e | \text{if } e \text{ then } e \text{ else } e
\]

\[
v ::= n | \text{true} | \text{false}
\]

- In terms of interpreter definitions:

```ocaml
type exp =
  Val of value
| ... (* as before *)
| Eq0 of exp
| If of exp * exp * exp

type value =
  Int of int
| Bool of bool
```
Rules for Eq0 and Booleans

- Booleans evaluate to themselves
 - \(A; \text{false} \Rightarrow \text{false} \)

- \(\text{eq0} \) tests for 0
 - \(A; \text{eq0 0} \Rightarrow \text{true} \)
 - \(A; \text{eq0 3+4} \Rightarrow \text{false} \)
Rules for Conditionals

<table>
<thead>
<tr>
<th>A; e1 ⇒ true</th>
<th>A; e2 ⇒ v</th>
</tr>
</thead>
<tbody>
<tr>
<td>A; if e1 then e2 else e3 ⇒ v</td>
<td></td>
</tr>
<tr>
<td>A; e1 ⇒ false</td>
<td>A; e3 ⇒ v</td>
</tr>
<tr>
<td>A; if e1 then e2 else e3 ⇒ v</td>
<td></td>
</tr>
</tbody>
</table>

- Notice that only one branch is evaluated
 - A; if eq0 0 then 3 else 4 ⇒ 3
 - A; if eq0 1 then 3 else 4 ⇒ 4
Quiz 3

What is the derivation of the following judgment?

```plaintext
•; if eq0 3-2 then 5 else 10 ⇒ 10
```

(a)

```
•; 3 ⇒ 3  •; 2 ⇒ 2 3-2 is 1
-------------------------------
•; eq0 3-2 ⇒ false  •; 10 ⇒ 10
----------------------------------
•; if eq0 3-2 then 5 else 10 ⇒ 10
```

(b)

```
3 ⇒ 3  2 ⇒ 2 3-2 is 1
------------------------
eq0 3-2 ⇒ false  10 ⇒ 10
----------------------------------
if eq0 3-2 then 5 else 10 ⇒ 10
```

(c)

```
•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1
------------------------
•; 3-2 ⇒ 1 1 ≠ 0
----------------------------------
•; eq0 3-2 ⇒ false  •; 10 ⇒ 10
----------------------------------
•; if eq0 3-2 then 5 else 10 ⇒ 10
```
Quiz 3

What is the derivation of the following judgment?
•; if eq0 3-2 then 5 else 10 ⇒ 10

(a)
•; 3 ⇒ 3 •; 2 ⇒ 2 3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10

(b)
3 ⇒ 3 2 ⇒ 2
3-2 is 1

eq0 3-2 ⇒ false 10 ⇒ 10

if eq0 3-2 then 5 else 10 ⇒ 10

(c)
•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10

(c)
•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10
Updating the Interpreter

```ocaml
let rec eval env e =
  match e with
  | Ident x -> lookup env x
  | Val v -> v
  | Plus (e1,e2) ->
    let Int n1 = eval env e1 in
    let Int n2 = eval env e2 in
    let n3 = n1+n2 in
    Int n3
  | Let (x,e1,e2) ->
    let Int n1 = eval env e1 in
    let Int n2 = eval env e2 in
    let n3 = n1+n2 in
    Int n3
  | Eq0 e1 ->
    let Int n = eval env e1 in
    if n=0 then Bool true else Bool false
  | If (e1,e2,e3) ->
    let Bool b = eval env e1 in
    if b then eval env e2
    else eval env e3
```

Basically both rules for `eq0` in this one snippet

Both `if` rules here
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s static semantics
 - I.e., the rules for type checking
- We won’t cover this in depth in this course, but here is a flavor.

- Types $t ::= \text{bool} \mid \text{int}
- Judgment $\vdash e : t$ says e has type t
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type `bool`
 \[\vdash \text{true} : \text{bool} \]
 \[\vdash \text{false} : \text{bool} \]

- Equality checking has type `bool` too
 - Assuming its target expression has type `int`
 \[\vdash e : \text{int} \]
 \[\vdash \text{eq0 } e : \text{bool} \]

- Conditionals
 \[\vdash e_1 : \text{bool} \]
 \[\vdash e_2 : t \]
 \[\vdash e_3 : t \]
 \[\vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t \]
Handling Binding

- What about the types of variables?
 - Taking inspiration from the environment-style operational semantics, what could you do?

- Change judgment to be $G \vdash e : t$ which says e has type t under type environment G
 - G is a map from variables x to types t
 - Analogous to map A, but maps vars to types, not values

- What would be the rules for \texttt{let}, and variables?
Type Checking with Binding

- **Variable lookup**

 \[\begin{align*}
 G(x) &= t \\
 G &\vdash x : t
 \end{align*} \]

 analogous to

 \[\begin{align*}
 A(x) &= v \\
 A; x &\Rightarrow v
 \end{align*} \]

- **Let binding**

 \[\begin{align*}
 G &\vdash e_1 : t_1 \\
 G, x : t_1 &\vdash e_2 : t_2 \\
 G &\vdash \text{let } x = e_1 \text{ in } e_2 : t_2
 \end{align*} \]

 analogous to

 \[\begin{align*}
 A; e_1 &\Rightarrow v_1 \\
 A, x : v_1; e_2 &\Rightarrow v_2 \\
 A; \text{let } x = e_1 \text{ in } e_2 &\Rightarrow v_2
 \end{align*} \]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later
Scaling Up: Lego City