
Chapter 2

Ruby

A regretful honey maker could be called
a rue-bee

Kliff

This is a programming language chapter so it has two (2) main things: talk about some
properties that the Ruby programming language has and the syntax the language has. If
you want to code along, all you need is a working version of Ruby and a text editor. You can
check to see if you have Ruby installed by running ruby -version. At the time of writing,
I am using Ruby 3.0.4. You can also download an interactive ruby shell called irb.

2.1 Introduction

Unlike the previous languages you have seen in 131/132 and 216, Ruby does not use a com-
piler so no machine code is generated. This means that compile-time checks do not exist.
This basically means that every check or error is done during run-time. I’ll expand more on
this in a bit but for now, lets write our first Ruby program.

1 # hello_world.rb
2 puts "Hello World"

Despite this being very simple, we already learned five (5) things.

• Single line comments are started with the pound or hashtag symbol

• no semicolons to denote end of statement

• puts is used to print things out to stdout (print if you don’t want a newline at the
end

• Parenthesis are technically optional when calling functions (but good style says to
only leave out if there are no arguments or if the function is puts, require, or
include)

9

10 CHAPTER 2. RUBY

• ruby file name conventions are lowercase_and_underscore.rb

• Strings exists in the language (most languages do, but some do not)

Now to run our ruby program we can just use

1 ruby hello_world.rb

Congrats, you have just made your first program in Ruby!

2.2 Typing

Now we just said that Ruby does not use compile-time checks and all checks and errors are
done at run-time. Let’s see this in action.

1 # program1.rb
2 variable1 = 5
3 variable1 = "hello"
4 variable2 = 4
5 variable3 = variable1 + variable2
6 puts varable3

Here is a simple program that sets some variables, adds two things together, and then prints
the results. This looks weird, but first lets run and see what happens, and then we can look
at the syntax.

ruby program1 . rb
hw . rb : 5 : in ‘ + ’ : no i m p l i c i t conversion of Integer into S t r i n g (TypeError)

from hw . rb : 4 : in ’ <main > ’

Looks like we have an error! Seems like variable1 and variable2 have different types
so we can’t use ’+’ on them. Which is interesting for 2 main reasons

• We did not get an error on line 3 when we change variable1 from an Integer
value to a String value

• there is no automatic conversion of integers to strings like we saw in Java

The first point is really important, but before we talk about it, let’s just modify our code so
that it runs without any errors by deleting line 3.

7 # program1-1.rb
8 variable1 = 5
9 variable2 = 4

10 variable3 = variable1 + variable2
11 puts varable3

Now if we run our code we get a different error. We get ’undefined local variable
or method ‘varable3’ for main:Object (NameError)’. Notice that because we
check everything during run-time, this error was not picked up until ruby was about to exe-
cute it. Many bugs from beginner Ruby programmers is due to misspelled variable names.
Here is a more visual demonstration of run-time erring.

2.2. TYPING 11

12 # program1-2.rb
13 variable1 = 5
14 variable2 = 4
15 variable3 = variable1 + variable2
16 print variable1
17 print " + "
18 print variable2
19 print " = " # gross. We will learn to convert later
20 puts varable3 # still misspelled

If we run the above code, we get ’5 + 4 = ’ printed out and then we get the same
’NameError’ as before. A error free program would look like

21 # program1-3.rb
22 variable1 = 5
23 variable2 = 4
24 variable3 = variable1 + variable2
25 puts variable3

Now that we fixed this issue, we can talk about why we didn’t get an error on line 3 in
program1.rb.

Notice that in the above code we set values to variables but we didn’t define the type
like we did in Java and C. This is because Ruby uses Dynamic type checking. Dynamic type
checking is a form of type checking which is typically contrasted to Static type checking.
Type checking is an action that is used for a Type system, which determines how a language
assigns a type to a variable. Ultimately: How does a a language know if a variable is an int
or a pointer? It does so by type checking.

12 CHAPTER 2. RUBY

For the most part, you probably only used static type checking since both C and Java
are statically typed. Static typing means that the type of a variable, construct, function,
etc is known at compile time. Should we then use a type in an incorrect manner (as we did
in program1.rb, then the compiler will raise an error and compilation will be aborted.
Contrasted to Dynamic typing which means that the type is only calculated at run-time.
Consider the following:

1 # err.c
2 void main(){
3 int x;
4 x = "hello"
5 }

Should we try to compile this code with the-Werror1 compile flag, we will get the following:
’error: assignment to ‘int’ from ‘char *’ makes integer from pointer
without a cast’. This is because during compilation, the compiler marks the x variable
as having a type of int yet is being assigned a pointer.

Now how did gcc know that there was a type issue here? The first conclusion would be
that we declared x as an int explicitly on line 3. This is called manifest or explicit typing
where we explicitly declare the type of any variable we create. This is in contrast to latent
or implicit typing where we don’t have to do this as we saw in ruby. It is important to note:
manifest typing is not the same as static typing. We will see this in OCaml as the language
is statically typed, but uses latent typing for its variables.

Back to Dynamic type checking, let’s look at the following:

1 # checking.rb
2 def add(a,b)
3 puts a + b
4 end
5
6 add(1,2)
7 add("hello"," world")

To begin, this is how you create a function in Ruby. Functions begin with the def key-
word and end with the end keyword. We will go into ruby code examples later so for now
just know this is a function that takes two arguments and then prints the the result of a +
b. Since Ruby is dynamically typed, we don’t assign types to the parameters a and b until
we run our code, and not until we actually use the values. This allows us to call add with
both Integers and Strings. Much like before it is important to note that latent typing
is not the same as dynamic typing.

In any case, you may be wondering Ruby knows the types of variables if we don’t ex-
plicitly declare their types. The process of deciding a type for an expression is called Type
inference and we will go more in depth with this in the OCaml section, but there are many
ways that type inference can be done, and in fact you already saw one way with our err.c

1Canonically it will just raise an error and still compile

2.3. OBJECT ORIENTED PROGRAMMING 13

program. We did not say that "hello"was a char * yet gcc knew because of the syntax of
the datatype. The same holds true for ruby. Integers are numbers without decimal points.
Floats are numbers with decimal points. Strings are anything put in quotes.2 You can check
this with the .class method. Did I mention that Ruby is object oriented?

2.3 Object Oriented Programming

You should be familiar with Object Oriented Programming (OOP) because of Java, however,
unlike Java, everything is an object in Ruby. Lets test this out.

1 # oop.rb
2 puts 3.class
3 puts "Hello".class
4 puts 4.5.class

You can see that everything, including primitives, are object oriented. Also notice that like
java, when calling an object’s methods, we use the dot syntax. That means that earlier when
we called a + b in add.rb, it was actually doing something like a.+(b). Don’t believe me?
Consider the following:

1 # program2.rb
2 m = 3.methods
3 puts methods.include?(:+)
4 puts 3.+(4)

The Line 2 just gets the methods which the object ’3’ has as an array. The Line 3 will then
print out ’true’ because we are asking if the array of methods includes the ’:+’method.
This is actually a symbol, but we will talk about that later. We can then call the ’+’ method
on 3 adding it to 4 and we get ’7’ as output. Pretty weird right?

Other properties of OOP also exist in Ruby. As we saw before, objects have methods,
and this is the primary way that objects interact with each other. Recall that Objects are
instances of Classes so each Object has it’s own state. This also means that all values
are references to objects (so be careful how you check to see if two values are equal).
Additionally, Ruby has an inheritance structure similar to Java. In Ruby, all classes are
derived from the Object class.

1 # oop.rb
2 puts 3.class
3 puts 3.class.ancestors
4
5 a = "hello"
6 b = a
7 puts a.equal?(b) #true
8 puts a.equal?("hello") #false
9 puts "hello" == "hello" #true

2We will see how ruby does this when we talk about parsing. In particular Project 4

14 CHAPTER 2. RUBY

Object oriented programming in Ruby also means that we need some sort of value to
represent the absence of an object. In java it was called ’null’, in Ruby, we call it ’nil’.
nil actually is an object itself and has methods which you can use.

1 # nil.rb
2 puts nil.methods
3 puts nil.to_s

2.3.1 Class Creation

Let’s make our first class

1 # square.rb
2 class Square
3 def initialize(size)
4 @size = size
5 end
6
7 def area
8 @size*@size
9 end

10 end
11
12 s = Square.new(5)
13 puts s.area

There is a lot here, let’s break it down.

• Lines 1 and 9 is the outline of the class. The name of the class is Square

• lines 2-4 is the Ruby equivalent to the constructor.

• lines 3 and 7 use @size which is a instance variable

• lines 6-8 is a instance method

• Line 11 is the instantiating of the newly made Square class

• line 12 is calling the instance method

The Equivalent Java code if below.

2.3. OBJECT ORIENTED PROGRAMMING 15

1 // Square.java
2 public class Square{
3 private int size;
4 public initialize(size){
5 this.size = size;
6 }
7
8 public int area(){
9 return size*size;

10 }
11 }
12
13 public static void main(String[] args){
14 Square s = new Square(5);
15 System.out.println(s.area);
16 }

Notice that the instance variable size is private which means if we wished to access
it, we would need to make getters and setters. We could do this by adding the following

1 # square-1.rb
2 class Square
3 # ...
4 # getter
5 def size
6 @size
7 end
8 #setter
9 def size=(s)

10 @size = s
11 end
12 end
13 # ...

This is annoying to do for each variable we have so Ruby actually has a built in function to
help us: attr_accessor Consider the following:

1 # square- 2.rb
2 class Square
3 attr_accessor :size
4 # ... same as before ...
5 end
6 s = Square.new(5)
7 puts s.area
8 s.size= 6
9 puts s.area

10 puts s.size

16 CHAPTER 2. RUBY

If you wanted to use static or class variables, you just prepend the variable name with
’@@’. So if you wanted to count how many squares were made, you could do so like so:

1 # square- 3.rb
2 class Square
3 @@count = 0
4 attr_accessor :size
5 def initialize(size)
6 @@count += 1
7 @size = size
8 end
9

10 def count
11 @@count
12 end
13 # ... same as before ...
14 end
15 s = Square.new(5)
16 s2 = Square.new(6)
17 puts s.count

For class or static variables you need to initialize them and write your own getters and
setters. You can also make static methods by defining them in terms of the class. See
below.

1 # counter.rb
2 class Counter
3 @@count = 0
4 def initialize()
5 @@count += 1
6 end
7
8 def Counter.counter
9 @@count

10 end
11 end
12 c = Counter.new
13 c1 = Counter.new
14 puts Counter.counter

One other thing you may have noticed is that we did not use the common return key-
word. This is because Ruby will return whatever the last line in a function evaluates to. The
following 3 methods all do the same thing:

1 # return.rb
2 def to_s1
3 s = "Hello"
4 return s

2.3. OBJECT ORIENTED PROGRAMMING 17

5 end
6
7 def to_s2
8 s = "Hello"
9 s

10 end
11
12 def to_s3
13 "Hello"
14 end
15 puts to_s1
16 puts to_s2
17 puts to_s3

Lastly, we stated earlier that classes are all derived from the Object class. This means
we must have some form of inheritance. It acts much like Java, the syntax is just different.

1 # inheritance.rb
2 class Shape
3 def to_s
4 "I am a shape"
5 end
6 end
7
8 class Square < Shape
9 def to_s

10 super() + " and a square"
11 end
12 end
13 puts Square.new

The above created two classes, Shape and Square. A Square is a subclass of Shape
and so it inherits all its methods. If we wish to override our parent’s method, we can cer-
tainly do so as seen in lines 9-11. If we wish to refer to the parent’s method we can do so
using the super method. In fact we can override any method, but method overloading is
not supported. We would get an error should be try to run

1 # overload-err.rb
2 class Square
3 def func1(x)
4 puts "func1"
5 end
6
7 def func1(x,y)
8 puts "func2"
9 end

10 end
11 Square.new.func1(2,3) #fine

18 CHAPTER 2. RUBY

12 Square.new.func1(2) #error

But we could do something like the following

1 # override.rb
2 class Square
3 def func1(x)
4 puts "func1"
5 end
6
7 def func1(x)
8 puts "func2"
9 end

10 end
11 Square.new.func2(1)

This can lead to some pretty interesting behaviour where we can add things to existing
Classes. In the following example, I am going to add a new method to the Integer class
which just returns the double of the value.

1 # double.rb
2 puts 3.methods.include?(:double)
3
4 class Integer
5 def double
6 self + self
7 end
8 end
9

10 puts 3.methods.include?(:double)
11 puts 3.double

The self keyword is similar to java’s this. It refers to the current object. We can also
use this power of overriding methods to break ruby

1 # break.rb
2 class Integer
3 def +(x)
4 "Not Today"
5 end
6
7 def -(x)
8 self * x
9 end

10 end
11
12 puts 3+4
13 puts 3-4

2.4. CODE BLOCKS 19

If we run this in irb, it will crash, but if you save this as a file and run it, you get ’Not
Today’ followed by ’12’.

2.4 Code blocks

2.5 Mixins

2.6 Data Types and Syntax

That is pretty much all you need to know about Ruby for this course for now. All that’s left
is to go over syntax of data types and other things.

2.6.1 Numbers

There are two common types of numbers: Integers and Floats. An Integer is a positive
or negative integer value without a decimal point. A Float is a positive or negative value
with a decimal point and at least one digit on either side of said point. When performing
operations between the same types, the resulting value is the same type. When performing
an operation which involves a Float, the resulting value is typically also a Float. For some
reason, Ruby also allows you to use an underscore as a separator. Maybe for readability?

1 # numbers.rb
2 -1 + 1 # addition between Integers
3 6.5 % 1.2 # modulus between Floats
4
5 2. # not valid for floats
6 .1 # also not valid
7
8 3.0/2 # will result in a Float
9

10 1_000_000 == 1000000 # true

2.6.2 Stings and Symbols

Strings in ruby are anything in-between double or single quotes. Since things are Objects
in Ruby, Strings follow structural equality, but not physical equality. You can nest single
and double quotes if you want to print one or the other.

1 # strings.rb
2 "String 1"
3 ’String 1’
4 ’String’ == "String" # true
5 "string".equal?("string") # false

20 CHAPTER 2. RUBY

Symbols on the other hand are special strings, but only one of each symbol exits
meaning they are physically equal. Since they are physically equal, they are also struc-
turally equal. A symbol can be any valid string but is written with a ’:’ in the front.
You can add quotes if you have a multi-word symbol. We have seen symbols when using
attraccessor and.methods.

1 # symbol.rb
2 :"String 1"
3 :’String 1’
4 :"string".equal?(:"string") # true
5 :"string".equal?(:’string’) # true
6 :"string".equal?(:string) # true

2.6.3 Arrays

Arrays use the very common bracket syntax for both creation and indexing.
Unlike in most languages, arrays can be heterogeneous which is nice.
Ruby arrays also support dynamic sizing and set operations. Any value
not initialized because nil. One important thing to note is that when
dealing with n-Dimensional arrays, you must always have the previous
dimension declared.

1 # arr.rb
2 # creating
3 arr = []
4 arr = [1,2,3,4]
5 arr = [1,2.0,"hello"]
6
7 arr = Array.new(3) # [nil,nil,nil]
8 arr = Array.new(3,"a") # ["a","a","a"]
9

10 # indexing
11 a = [1,2,3,4]
12 puts a[0] # 1
13 puts a[-1] # 4
14
15 # dynamic sizing
16 arr = []
17 arr[4] = 5
18 puts arr # [nil,nil,nil,nil,5]
19
20 # set stuff
21 a = [1,2,3,4,5]
22 b = [4,5,6,7,8]
23 puts a+b # [1,2,3,4,5,4,5,6,7,8]
24 puts a|b # [1,2,3,4,5,6,7,8]

2.6. DATA TYPES AND SYNTAX 21

25 puts a&b # [4,5]
26 puts a-b # [1,2,3]
27
28 #adding and removing
29 a = [1,2,3]
30 a.push(4)
31 puts a # [1,2,3,4]
32 a.pop
33 puts a # [1,2,3]
34 a.unshift(0)
35 puts a # [0,1,2,3]
36 a.shift
37 puts a # [1,2,3]
38 a.delete_at(1)
39 puts a # [1,3]
40 a.delete(3)
41 puts a # [1]
42
43 a2d = [][] # error
44 a2d = []
45 a2d[0] = []
46 puts a2d # [[]]
47
48 # you can also use a code block
49 a2d = Array.new(3){Array.new(3)} # create a 3x3 matrix
50 puts a2d #[[nil,nil,nil],[nil,nil,nil],[nil,nil,nil]]

Unlike some languages, Hashes are built into Ruby. This means you don’t
have to make your own hashing mechanism or hash function (though you
should if you are doing this for security purposes). Ruby uses the common
curly brace syntax for creation and the bracket syntax to index. If
a key does not exist in the hash, it is automatically mapped to nil.
You can change the default hash if you want. Hashes in ruby are very
much like arrays, except instead of mapping numbers (or indexes) to values,
you can map anything to anything. That is to say, keys do not have the
be the same amongst each other and the same for values. Keys and values
also do not have to have the same type. Like Arrays, when dealing with
n-Dimensional arrays, you must always have the previous dimension declared.

1 # arr.rb
2 # creating and indexing
3 h = {}
4 h = {"key" => :value,}
5 h = Hash.new
6 puts h[’key’] # nil
7 h = Hash.new(:default)
8 puts h[’key’] # :default

22 CHAPTER 2. RUBY

9
10 # adding
11 h = {}
12 h[’key1’] = :value1
13 puts h # {’key1’=>:value1}
14 h.delete(’key1’)
15 puts h # {}
16
17 # Multi-dimensional Hashes
18 h = {}
19 h[0] = {}
20 h[0][0] = 4
21 h2 = {}
22 h2[0][0] = 4 # error

2.6.4 Control Flow

The most simple version of control flow is the if statement. You should
know what an if statement is by now so I won’t discuss what they are
or how they work. Instead lets talk about the bigger class of statements:
control statements. Control statements control the flow of program execution;
More specifically they alter which command comes next. There are several
in Ruby: if, while, for, until, do while the main ones, but most people
just use the first 3. For those that have a boolean check, ’true’ is
anything that is not ’false’ or ’nil’. ’nil’ is like null, it is used
for initialized fields. however, ’nil’ is an object itself of the NilClass.
’true’ and ’false’ are also objects of TrueClass and FalseClass respectively.
Note:FalseClass and NilClass do not evaluate to false. Consider the
following:

1 # conditional.rb
2 count = 1
3 while count >= 0
4 if 3 > 4 then # then is optional
5 puts hello
6 elsif nil
7 puts "nil is true"
8 else
9 if count == 0

10 puts FalseClass == false
11 end
12 puts NilClass == false
13 end
14 count -= 1
15 end

2.6. DATA TYPES AND SYNTAX 23

You should run this code to see what happens but but here are 3 important
things

• on line 5, hello is an undefined variable but Ruby never catches
this. Since Ruby is dynamically typed, this bug goes unnoticed.

• instead of elseif or else if, ruby uses elsif. Why, I have no idea.
This is a common bug

• the end keyword is commonly used whenever you would otherwise use
} in other languages

You can read more at the Ruby Docs.

