Quiz 3 from Fall 2020 (Practice)

STUDENT NAME
Search students by name or email..

Q1 First Sets

3 Points
Consider the following CFG:
$S \rightarrow T T V T$
$T \rightarrow \mathbf{x} \mid \varepsilon$
$V \rightarrow \mathbf{y} \mid \mathbf{z}$

Q1.1

1 Point
Which non-terminals are in the first set of S ?
y

Save Answer

Q1.2

1 Point
Which non-terminals are in the first set of T ?

```
    x
```

 y
 z
-

Q1.3

1 Point
Which non-terminals are in the first set of V ?

```
    x
```

```
    y
```

 z
 $\square \varepsilon$

Save Answer

Q2 Parsing

6 Points
Consider the following CFG:
$S \rightarrow \mathbf{x y} S \mathbf{z} \mid \mathbf{x} T \mathbf{y z}$
$T \rightarrow \mathbf{w} T \mid \varepsilon$

Complete the parse_s and parse_T functions below, which should parse T and S,
respectively. Your functions should not return anything, but should fail if the input is invalid (if the input is valid, simply return ()).

The structure of the program is as follows:

```
let rec parse_S toks =
    (* TODO *)
and rec parse_T toks =
    (* TODO *)
```

The lookahead and match_tok functions are provided below:

```
let lookahead toks =
    match toks with
    | h :: t -> h
    | [] -> raise (ParseError "no tokens")
let match_tok toks tok =
    match toks with
    | h :: t when h == tok -> t
    | _ -> raise (ParseError "bad match")
```


Q2.1

Implement parse_s below of type string list -> unit. The first line of your answer should be let rec parse_S toks =.

Enter your answer here

Q2.2

3 Points
Implement parse_T below of type string list -> unit. The first line of your answer should be and rec parse_T toks =.

Enter your answer here

Save Answer

Q3 CFG Construction

3 Points
Construct a CFG that generates strings of the form $a^{x} b^{y}$ where $y \geq 2 x$.

Enter your answer here

Save Answer

Q4 Ambiguous Grammars

2 Points

Consider the following CFG:
$S \rightarrow \mathbf{a} S \mid \mathbf{a} T$
$T \rightarrow \mathbf{a}|\mathbf{b}| \varepsilon$

Prove that this grammar is ambiguous.

Enter your answer here

Q5 Operational Semantics
6 Points

$$
\begin{aligned}
& A ; n \rightarrow n \\
& \frac{A(x)=v}{A ; x \rightarrow v}
\end{aligned} \quad \frac{A ; e_{1} \rightarrow v_{1} A, x: v_{1} ; e_{2} \rightarrow v_{2}}{A ; \text { let } x=e_{1} \text { in } e_{2} \rightarrow v_{2}}
$$

$$
\begin{array}{cc}
A ; e_{1} \rightarrow n_{1} A ; e_{2} \rightarrow n_{2} \quad n_{1}>n_{2} \\
\hline A ; e_{1}>e_{2} \rightarrow \text { true } & A ; e_{1} \rightarrow n_{1} A ; e_{2} \rightarrow n_{2} \quad n_{1} \leq n_{2} \\
A ; e_{1}>e_{2} \rightarrow \text { false } \\
\frac{A ; e_{1} \rightarrow \text { true } A ; e_{2} \rightarrow v}{A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \rightarrow v} & \frac{A ; e_{1} \rightarrow \text { false } A ; e_{3} \rightarrow v}{A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \rightarrow v}
\end{array}
$$

Using the above rules, fill in the blanks in the derivation show below:

IMPORTANT: Double-check that the BLUE box numberings correspond with your answers; the boxes are numbered from bottom to top. We will not accept out-of-order answers.

Blank 1:

Enter your answer here

Blank 2:

Enter your answer here

Blank 3:

Enter your answer here

Blank 4:

Enter your answer here

Blank 5:

Enter your answer here

Save Answer

