
0/21 Questions Answered

Midterm 2 from Fall 2021

Q1 Instruction
0 Points

Please carefully read the instructions below:

Ground Rules

This exam is open-note, which means that you may refer to your own notes and class resources

during the exam. You can also use irb and utop . You may not work in collaboration with

anyone else, regardless of whether they are a student in this class or not. If you need to ask a

question about the exam, post a private question on Piazza.

Sections

DFA and NFA

NFA to DFA

Context-Free Grammars

Parsing

Operational Semantics

Lambda Calculus

Rust

General Advice

You can complete answers in any order, and we urge you to look through all of the questions at

the beginning so you can accurately gauge how long you should spend on each question.

Refer to the counter in the top left corner to ensure you have completed all questions.

Submission

You have 75 minutes to complete this exam (see the timer in the upper right corner for

remaining time). Once you begin, you can submit as many times as you want until your time is

up. You can even leave this page and come back, and as long as the time hasn't expired, you'll

be able to update your submission. This means that if you accidentally submit, refresh, or lose

internet temporarily, you'll still be able to work on the test until the time is up. If you come back,

click "Resubmit" in the bottom-right corner to resume.

Honor Pledge

Please copy the honor pledge below:

I pledge on my honor that I have not given or received any unauthorized assistance on this

examination.

STUDENT NAME

Search students by name or email…

Enter your answer here

Signature

By entering your name below, you agree that you have read and fully understand all

instructions above.

Enter your answer here

Save Answer

Q2 DFA and NFA
10 Points

Q2.1 DFA and NFA
4 Points

Which strings will this NFA accept?

Save Answer

ab

cccccab

ddddd

ad

Q2.2 NFA to RegEx
6 Points

What regular expression does this NFA correspond to?

Enter your answer here

Save Answer

Q3 NFA to DFA
16 Points

Consider the following NFA:

Using subset construction, the above NFA can be converted to the DFA.

Q3.1 NFA to DFA 1
4 Points

In this DFA, which states from the original NFA make up the state X?

Save Answer

Q3.2 NFA to DFA 2
4 Points

In this DFA, which states from the original NFA make up the state Y?

1

2

3

4

5

Save Answer

Q3.3 NFA to DFA 3
4 Points

In this DFA, which states from the original NFA make up the state Z?

Save Answer

Q3.4 NFA to DFA 4
4 Points

In this DFA, which states are final?

Save Answer

Q4 Context-Free Grammars
18 Points

Q4.1 CFG

1

2

3

4

5

1

2

3

4

5

X

Y

Z

6 Points

Write a CFG over the alphabet that recognizes strings that start with a 1 , end with

a 0 , and have any number of 0 s or 1 s in between.

Enter your answer here

Save Answer

Q4.2 Left Recursion vs. Right Recursion
6 Points

Consider the following CFG

S -> S + T | T
T -> P * T | P
P -> 1 | 2 | 3 | (S)

Notice that this grammar is left recursive, write down every rule (with or without any changes) so

that it is right recursive.

Hint: Write the new first rule on the first line, the new second rule on the second line, etc.

Enter your answer here

Save Answer

Q4.3 FIRST Set
6 Points

Find the FIRST sets for each non-terminal in the following grammar:

S -> TU | Ua
T -> da | Ub
U -> g | ε

FIRST(S)=

Enter your answer here

FIRST(T)=

Enter your answer here

FIRST(U)=

Σ = {0, 1}

Enter your answer here

Save Answer

Q5 Parsing
18 Points

Q5.1 Parse Tree
6 Points

Write an exp value to describe the corresponding AST of the above parse tree.

type exp =
 | Num of int
 | Plus of exp * exp
 | Mul of exp * exp

Enter your answer here

Save Answer

Q5.2 Recursive Descent Parser
12 Points

You will implement a recursive descent parser for the following CFG:

S -> TU | a
T -> da | Ub
U -> g

You should use these functions and definitions:

type token =
 | Tok_a
 | Tok_b
 | Tok_d
 | Tok_g

(* Note that these are imperative implementations.
 You may assume that `tok_list` has been filled by a lexer. *)

let tok_list = ref []

let match_tok x =
 match !tok_list with
 | h :: t when h = x -> tok_list := t
 | _ -> raise (ParseError "bad match")

let lookahead () =
 match !tok_list with
 | [] -> None
 | h :: t -> Some h

Your functions should return the unit value () if they successfully parse, otherwise they

should raise (ParseError "message") . (The contents of the message string do not matter.)

Enter your code for the functions below:

let rec parse_S () =

Enter your answer here

and parse_T () =

Enter your answer here

and parse_U () =

Enter your answer here

Save Answer

Q6 Operational Semantics
13 Points

Consider the following grammar of expressions in a new programming language:

(The represents variable names. We use to mean expressions and to mean values.

Parentheses are only used to prevent ambiguity, e.g., the term is distinct from the

term , but the parens have no other purpose.)

Answer the questions about this language with the following operational semantics. Note that

each semantic rule is numbered for reference in your answers.

Q6.1 Operational Semantics 1
3 Points

Rules 1 and 2 (but none of the others) are examples of…

e ::=
∣
∣
∣
∣
∣
∣

x

1
0
x = e in e

■ e
e 🔴 e
(e)

v ::=
∣

1
0

x e v

(⬛ e) 🔴 e
⬛ (e 🔴 e)

 (1) (2) (3)
A; 1 ⇒ 1 A; 0 ⇒ 0 A; x ⇒ v

A(x) = v

 (4)
A; ⬛ e ⇒ v 1 2

A; e ⇒ v v is 0 if v is 1, otherwise v is 11 1 2 1 2

 (5)
A; e 🔴 e ⇒ v 1 2 3

A; e ⇒ v A; e ⇒ v v is 0 if v = v , otherwise v is 11 1 2 2 3 1 2 3

 (6)
A; x = e in e ⇒ v 1 2 2

A; e ⇒ v A,x : v ; e ⇒ v 1 1 1 2 2

Axioms

Semantics

Environments

Operations

Save Answer

Q6.2 Operational Semantics 2
3 Points

The semantics given are…

Save Answer

Q6.3 Operational Semantics 3
3 Points

The “A” used in the operational semantics is called a(n)

Save Answer

Q6.4 Operational Semantics 4
4 Points

(Read the full text of this question carefully!)

Using the given operational semantics, you must evaluate the following expression:

First, fill in the holes in the proof tree shown below by writing the number of the rule for each

hole. Then, tell us what the expression evaluates to (the in the bottom judgment).

ONLY WRITE THE RULE'S NUMBER, DO NOT WRITE THE RULE'S TEXT.

Hints

1. Each rule is used exactly once.

2. Proof trees are filled from the bottom up and from left to right.

3. The result in part (g) should be a value. There are only two possible values in this language!

Small-step

Big-step

Expression

Term

Environment

Alphabet

x = 0 in 1 🔴 (⬛ x)

?

 (a)
A; x = 0 in 1 🔴 (⬛ x) ⇒ ? (g)

 (b) (c)
A,x : 0; 1 🔴 (⬛ x) ⇒ ?

 (d) (e)

 (f)

We have copied the semantics from the top of question 6 here so you don't have to scroll so

much:

(a)

Enter your answer here

(b)

Enter your answer here

(c)

Enter your answer here

(d)

Enter your answer here

(e)

Enter your answer here

(f)

Enter your answer here

(g) (Result)

Enter your answer here

Save Answer

Q7 Lambda Calculus
15 Points

 (1) (2) (3)
A; 1 ⇒ 1 A; 0 ⇒ 0 A; x ⇒ v

A(x) = v

 (4)
A; ⬛ e ⇒ v 1 2

A; e ⇒ v v is 0 if v is 1, otherwise v is 11 1 2 1 2

 (5)
A; e 🔴 e ⇒ v 1 2 3

A; e ⇒ v A; e ⇒ v v is 0 if v = v , otherwise v is 11 1 2 2 3 1 2 3

 (6)
A; x = e in e ⇒ v 1 2 2

A; e ⇒ v A,x : v ; e ⇒ v 1 1 1 2 2

In your answers for this section, you may write the lambda symbol as λ , \ , or L , but please be

consistent!

Q7.1 Lambda Calculus 1
4 Points

Reduce the expression as far as possible (Show your work for partial credits):

(λx. λx. y x) (λx. y x) x

Enter your answer here

Save Answer

Q7.2 Lambda Calculus 2
6 Points

Perform an ɑ-conversion to the following expression:

(λy. λz. y z) (λa. y) (x)

Enter your answer here

Then, apply as many β-reductions as possible to it without performing any other ɑ-

conversions.

Enter your answer here

Save Answer

Q7.3 Lambda Calculus 3
5 Points

Given the following definitions:

true = λx. λy. x
false = λx. λy. y
and = λx. λy. x y false

Prove that and true false is equivalent to false . (Show all steps involving β-reduction and

substitution/replacement for full credit.)

Enter your answer here

Save Answer

Q8 Rust
10 Points

Q8.1 Rust: Ownership
4 Points

let a = String::from("cmsc330");
let b = a;
let c = &b;
let d = c;

Which variable is the owner of the string “cmsc330” ?

Save Answer

Q8.2 Rust: Fill in the blank
6 Points

Consider the following Rust code:

fn foo(s: _____) { // #1
 let mut i = s.len();
 while i > 0 {
 println!("{}", &s___); //#2
 i = i - 1;
 }
}

fn main() {
 let s = String::from("CMSC330");
 foo(_____); //#3
}

Fill in the 3 blanks such that the program, when run, outputs:

a

b

c

d

0
30
330
C330
SC330
MSC330

#1

Enter your answer here

#2

Enter your answer here

#3

Enter your answer here

Save Answer

Save All Answers Submit & View Submission

