Quiz 3 from Fall 2021

STUDENT NAME
Search students by name or email...

Q1 Context-Free Grammars

8 Points

Q1.1

4 Points
Construct a CFG that matches the following regex:
$a * m+n$?

Enter your answer here

Save Answer

Q1.2

4 Points
Prove that the following CFG is ambiguous:

S -> S + T | T
T -> $1+\mathrm{T} \mid 1$

Enter your answer here

Save Answer

Q2 Parsing

8 Points

Rewrite the following context-free grammar so that it can be parsed through recursive descent without creating an infinite loop.

```
S -> S or S | S and S | B
B -> not B | V
V -> true | false
```

NOTE: The rewritten grammar should accept the same strings as the one provided above.

Enter your answer here

Save Answer

Q2.2

5 Points
Consider the following:

```
type token =
| Tok_Char of char
| Tok_Plus
| Tok_Comma
(* NOTE: This is an imperative implementation! *)
let lookahead () =
    match !tok_list with
    | [] -> raise (ParseError "no tokens")
    | (h::t) -> h
let match_tok a =
    match !tok_list with
    | (h::t) when a = h -> tok_list := t
    | _ -> raise (ParseError "bad match")
```

Complete the context-free grammar that is parsed by the code below.

```
let rec parse_S () =
    parse_T ();
    match lookahead () with
    | Tok_Plus -> (match_tok Tok_Plus; parse_S ())
    | Tok_Comma -> (match_tok Tok_Comma; parse_T (); match_tok Tok_Comma; parse_S ())
    | _ -> ()
and parse_T () =
    parse_A ();
    match lookahead () with
    | Tok_Char 'b' -> (match_tok (Tok_Char 'b'))
    | Tok_Char 'c' -> (match_tok (Tok_Char 'c'))
    | _ ->()
and parse_A () =
    match lookahead () with
```

```
    | Tok_Char 'a' -> (match_tok (Tok_Char 'a'))
```

 | _ -> ()
 Note: You can use E or e to denote an epsilon

S ->

Enter your answer here

T ->

Enter your answer here

A ->

Enter your answer here

Save Answer

Q3 Operational Semantics

4 Points

$$
\begin{aligned}
& \begin{array}{l}
A ; n \rightarrow n \\
\frac{A(x)=v}{A ; x \rightarrow v} \quad \frac{A ; e_{1} \rightarrow v_{1} \quad A, x: v_{1} ; e_{2} \rightarrow v_{2}}{A ; \text { let } x=e_{1} \text { in } e_{2} \rightarrow v_{2}}
\end{array} \\
& \frac{A ; e_{1} \rightarrow v_{1} A ; e_{2} \rightarrow v_{2} \quad v_{3} \text { is } v_{1}+v_{2}}{A ; e_{1}+e_{2} \rightarrow v_{3}} \\
& \frac{A ; e_{1} \rightarrow n_{1} \quad A ; e_{2} \rightarrow n_{2} \quad n_{1}>n_{2}}{A ; e_{1}>e_{2} \rightarrow \text { true }} \\
& \frac{A ; e_{1} \rightarrow n_{1} \quad A ; e_{2} \rightarrow n_{2} \quad n_{1} \leq n_{2}}{A ; e_{1}>e_{2} \rightarrow \text { false }} \\
& \frac{A ; e_{1} \rightarrow \text { true } \quad A ; e_{2} \rightarrow v}{A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \rightarrow v} \\
& \frac{A ; e_{1} \rightarrow \text { false } \quad A ; e_{3} \rightarrow v}{A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \rightarrow v}
\end{aligned}
$$

Using the above rules, fill in the blank for the derivation below:

IMPORTANT: Double-check that the BLUE box numberings correspond with your answers; the boxes are numbered from bottom to top. We will not accept out-of-order answers.

Blank \#1

Enter your answer here

Blank \#2

Enter your answer here

Blank \#3

Enter your answer here

Blank \#4

Enter your answer here

Save Answer

