CMSC 330 Quiz 3 Fall 2021 Solutions

Q1. Context-Free Grammars

Q1.1. Construct a CFG that matches the following regex: $a * m+n$?

Q1.2. Prove that the following CFG is ambiguous:

```
S - S + T | T
T -> 1 + T | 1
```

We can show there are two possible derivations that yield the same result

```
S -> S + T -> T + T -> 1 + T -> 1 + 1
S -> T -> 1 + T -> 1 + 1
```

OR

```
S -> S + T -> T + T -> 1 + T + T -> 1 + 1 + 1
S -> T -> 1 + T -> 1 + 1 + T -> 1 + 1 + 1
```


Q2. Parsing

Q2.1. Rewrite the following context-free grammar so that it can be parsed through recursive descent without creating an infinite loop.

```
S -> S or S | S and S | B
B -> not B | V
V -> true | false
```

Note: The rewritten grammar should accept the same strings as the one provided above.

```
S -> B or S | B and S | B
B -> not B | V
V -> true | false
```

Q2.2. Consider the following:
type token =
| Tok_Char of char
| Tok_Plus
| Tok_Comma
(* NOTE: This is an imperative implementation! *)

```
let lookahead () =
    match !tok_list with
        | [] -> raise (ParseError "no tokens")
        | (h::t) -> h
```

let match_tok a =
match !tok_list with
| (h::t) when a = h -> tok_list := t

```
| _ -> raise (ParseError "bad match")
```

Complete the context-free grammar that is parsed by the code below.

```
let rec parse_S () =
    parse_T ();
    match lookahead () with
        | Tok_Plus -> (match_tok Tok_Plus; parse_S ())
        | Tok_Comma -> (match_tok Tok_Comma; parse_T (); match_tok Tok_Comma; parse_S ())
        | _ -> ()
and parse_T () =
    parse_A ();
    match lookahead () with
    | Tok_Char 'b' -> (match_tok (Tok_Char 'b'))
    | Tok_Char 'c' -> (match_tok (Tok_Char 'c'))
    | _ -> ()
and parse_A () =
    match lookahead () with
    | Tok_Char 'a' -> (match_tok (Tok_Char 'a'))
    | _ -> ()
```

Note: You can use E or e to denote an epsilon

```
S -> T + S | T, T, S | T
T -> A b | A c | A
A \(\rightarrow\) a \(\mid \varepsilon\)
```


Q3. Operational Semantics

$$
\begin{aligned}
& \begin{array}{l}
A ; n \rightarrow n
\end{array} \frac{A(x)=v}{A ; x \rightarrow v} \quad \frac{A ; e_{1} \rightarrow v_{1} \quad A, x: v_{1} ; e_{2} \rightarrow v_{2}}{A ; \text { let } x=e_{1} \text { in } e_{2} \rightarrow v_{2}} \\
& \frac{A_{;} e_{1} \rightarrow v_{1} A ; e_{2} \rightarrow v_{2} \quad v_{3} \text { is } v_{1}+v_{2}}{A_{i} e_{1}+e_{2} \rightarrow v_{3}} \\
& \frac{A ; e_{1} \rightarrow n_{1} A ; e_{2} \rightarrow n_{2} \quad n_{1}>n_{2}}{A ; e_{1}>e_{2} \rightarrow \text { true }} \quad \frac{A ; e_{1} \rightarrow n_{1} A ; e_{2} \rightarrow n_{2} \quad n_{1} \leq n_{2}}{A ; e_{1}>e_{2} \rightarrow \text { false }} \\
& \frac{A ; e_{1} \rightarrow \text { true } \quad A ; e_{2} \rightarrow v}{A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \rightarrow v} \\
& \frac{A ; e_{1} \rightarrow \text { false } \quad A ; e_{3} \rightarrow v}{A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \rightarrow v}
\end{aligned}
$$

Using the above rules, fill in the blank for the derivation below:

\#1: let $x=5$ in
\#2: A,x:5; 2 -> 2
\#3: 1 > 0 -> true
\#4: $A, x: 5, y: 2(y)=2$

