CMSC 330: Organization of Programming
Languages

Type-Safe, Low-level Programming with
Rust

CMSC330 Summer 2025

What choice do programmers have?

C/C++ Java, OCaml, Go, Ruby...
« Type-unsafe « Type safe
* Low level control * High level, less control

« Performance over safety and
ease of use

* Manual memory management,
e.g., with malloc/free

Something in between ... ?

CMSC330 Summer 2025

Ease-of-use and safety over
performance

Automatic memory
management via garbage
collection

* No explicit malloc/free

Rust: Type-safe (and Thread-safe), and Fast

* A Mozilla-sponsored, public
project since 2010

— Started in 2006 by Graydon
Hoare while at Mozilla

* Most loved programmin
language in Stack Overflow
annual surveys every year
from 2016 through 2020

« Key properties: Type safety,
and no data races, despite use
of concurrency and manual
memory management

CMSC330 Summer 2025

Rust in the Real World

* Firefox Quantum and Servo components
— https://servo.org

REmacs port of Emacs to Rust

— https://github.com/Wilfred/remacs

Amethyst game engine
— https://www.amethyst.rs/

Magic Pocket filesystem from Dropbox

— https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

OpenDNS malware detection components
 https://www.rust-lang.org/en-US/friends.html

CMSC330 Summer 2025

https://servo.org
https://servo.org
https://github.com/Wilfred/remacs
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html
https://www.rust-lang.org/en-US/friends.html
https://www.rust-lang.org/en-US/friends.html
https://www.rust-lang.org/en-US/friends.html
https://www.rust-lang.org/en-US/friends.html
https://www.rust-lang.org/en-US/friends.html

Features of Rust

 Lifetimes and Ownership
— Key feature for ensuring safety

 Traits as core of object(-like) system
« Variable default is immutability
« Data types and pattern matching

* Type inference
— No need to write types for local variables

« Generics (aka parametric polymorphism)
 First-class functions
 Efficient C bindings

CMSC330 Summer 2025

Takes ideas from
functional and OO
languages, and
recent research

Installing Rust

* |nstructions, and stable installers, here:
https://www.rust-lang.org/en-US/install.html

* On a Mac or Linux (VM), open a terminal and run
curl https://sh.rustup.rs -sSf | sh
* On Windows, download+run rustup-init.exe

https://static.rust-lang.org/rustup/dist/i686-pc-windows-
gnu/rustup-init.exe

CMSC330 Summer 2025

Rust Compiler, Build System

* Rust programs can be compiled using rustc

— Source files end in suffix .rs

— Compilation, by default, produces an executable
* No —c option

» Preferred: Use the cargo package manager
— Will invoke rustc as needed to build files
— Will download and build dependencies

— Based on a .toml file and .lock file
* You won’t have to mess with these for this class

— Like ocamlbuild or dune

CMSC330 Summer 2025

Using cargo

« Make a project, build it, run it
Use cargo to run tests,

$ cargo new hello cargo --bin too; will discuss later
% cd hello_cargo
% 1ls

Cargo.toml src/

$ ls src fn main() {
println! ("Hello, world!”)

main.rs

o —

% cargo build

Compiling hello cargo v0.1.0 (file:///..) Uses rustc, the
Finished dev [unoptimized + debuginfo] .. RUStCOﬁWmer

% ./target/debug/hello cargo
Hello, world!

CMSC330 Summer 2025 More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html
https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html
https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html
https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html
https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html
https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html
https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, Interactively

4 C @ [0 & play.rust-lang.org

° RUSt haS no top-level a + SIGPLAN BlogCo.. @ Reload @ UMCP
la OCaml or Ruby BN oo o

= fn main() {
println!("Hello, world!");
}

 There is an in-browser
execution environment

— https://play.rust-lang.org/
Execution

Compiling playground v8.0.1 (/playground)
Finished dev [unoptimized + debuginfo] target(s) in ©.98s
Running ‘target/debug/playground’

Hello, world!
CMSC330 Summer 2025

Rust Documentation

» Rust documentation is a good
reference, and way to learn THE RUST
— https://doc.rust- PROGRAMMING
lang.org/stable/ LANGUAGE

lllll L KLABNIK AND CAROL fcCHoLs,

* This contains links to

— the Rust Book (on which
most of our slides are
based)

— the reference manual, and

— short manuals on the
compiler, cargo, and more

CMSC330 Summer 2025

https://doc.rust-lang.org/stable/
https://doc.rust-lang.org/stable/
https://doc.rust-lang.org/stable/
https://doc.rust-lang.org/stable/

Rust Basics

CMSC330 Summer 2025

Functions

// comment
fn main() {

println! (“Hello, world!”);
}

Hello, world!

CMSC330 Summer 2025

Let Statements

{

{
let x = 37;
Xx =x + 5;//err
X

}

{ //err:
let x:u32
let y =x + 5;
'

}

I
I
[

{

{

let x = 37;
let y =x + 5;
y
}//42
{
let x = 37;
let x = x + 5;
X
}//42
Redefining a
variable shadows
it (like OCaml);
aim to avoid

CMSC330 Summer 2025

let mut x = 37; let x:il6 = -1;
XxX=x+5; let y:116 = x+5;
X y

}//42 Y/ /4
Variables Types inferred by

immutable by
default; use mut
to allow updates

default; optional
annotations must be

consistent (may
override defaults)

Conditionals

fn main() {
let n = 5;
if n < 0 {
print! ("{} is negative", n);
} else if n > 0 {
print! ("{} is positive", n);
} else {
print! ("{} is zero", n);
}
}

5 is positive

CMSC330 Summer 2025

Conditionals are Expressions (like OCaml)

fn main() {

let n = 5;

let x = if n < 0 {

} eise i Type error
};

print! ("{:?}|",x);
}

CMSC330 Summer 2025

Factorial in Rust (recursively)

fn fact(n:132) -> i32

{
ifn==0 {1}
else {
let x = fact(n-1);
n * x
}

}

fn main() {

let res = fact(6);

println! (“fact(6) = {}”,res);
}

fact(6) = 720

CMSC330 Summer 2025

Quiz: What does this evaluate to?

{ let x = 6;
let y = "hi";
if x ==5 {y }) else { 5 };
7

}

O N O

A.
B.
C.
D. Error

CMSC330 Summer 2025

Quiz: What does this evaluate to?

{ let x = 6;
let y = "hi";
if x ==5 {y }) else { 5 };
.
}
A. 6
B. 7
C.5
D. Error — if and else have incompatible types

CMSC330 Summer 2025

Quiz: What does this evaluate to?

{ let x
let y
Y = X,
X =y

6;
4;

}

A. 6

B. true
C. false
D. error

CMSC330 Summer 2025

Quiz: What does this evaluate to?

{ let x
let y
Y = X,
X =y

i
I

}

A. 6

B. true

C. false

D. error —y is immutable

CMSC330 Summer 2025

Using Mutation

* Mutation is useful when performing iteration
— As in C and Java

fn fact(n: u32) -> u32 {
let mut x = n;
let mut a = 1;

loop {
if x <=1 { break; } jqfinite loop
— * c
a=a?®zx; (break out)
x=x - 1;

CMSC330 Summer 2025

Other Looping Constructs

* While loops
—while e block

* For loops
— for pat in e block
» More later — e.qg., for iterating through collections

for x in 0..10 {
println! ("{}", x); // x: i32
}

CMSC330 Summer 2025

Other Looping Constructs

* These (and loop) are expressions

— They return the final computed value
* unit, if none
— break may take an expression, which is the loop’s final value

let mut x = 5;

let y = loop {
X += x - 3;
println! ("{}", x);// 7111935
X % 5 =0 { break x; }

};

print! ("{}",y); /I35

CMSC330 Summer 2025

Quiz: What does this evaluate to?

14

let mut x =1
for i in 1..6
.|.

let x = x i;
}
X
A. 1
B. 6
C.0
D. error

CMSC330 Summer 2025

Quiz: What does this evaluate to?

14

let mut x =

1
for i in 1..6 {
let x = x + 1;

}
X

A. 1

B. 6

C.0

D. error

CMSC330 Summer 2025

Data: Scalar Types

* Integers
~i8,i16, 132, 164, isize
— u8,ul6, u32, u
« Characters (unicode)
— char

Machine word size

usize

Defaults (from inference)
* Booleans

— £32, £f64

* Note: arithmetic operators (+, -, etc.) overloaded

CMSC330 Summer 2025

Compound Data: Tuples

* Tuples
— n-tuple type (t1,.., tn)
« unit () isjustthe O-tuple
— n-tuple expression (el, ..., en)
— Accessed by pattern matching or like a record field

let tuple = ("hello", 5, '¢');
assert eq! (tuple.O, "hello");
let(x,y,z) = tuple;

CMSC330 Summer 2025

Compound Data: Tuples

Distance between two points s and e

fn dist(s: (£64,£f64) ,e: (£64,£64))
let (sx,sy) = s;
let ex = e.0;
let ey = e.1;
let dx ex - sx;
let dy ey - sy
(dx*dx + dy*dy) .sqgrt()

-> f64

CMSC330 Summer 2025

Compound Data: Tuples

Can include patterns in parameters directly, too

let dx
let dy
(dx*dx

+

fn dist2 ((sx,sy): (£64,£64), (ex,ey): (£64,£64)) -> £64 {

ex - 8Xjy

ey - sy,
dy*dy) .sqrt ()

WEe'll see Rust structs later. They generalize tuples.

CMSC330 Summer 2025

Arrays: Standard Operations

« Creating an array (can be mutable or not)
— But must be of fixed length

* |Indexing an array
« Assigning at an array index

let nums = [1,2,3]; // type is [i32;3]

let strs = ["Monday", "Tuesday", "Wednesday"];
let x = nums[0]; // 1

let s = strs[l]; // "Tuesday"

let mut xs = [1,2,3];

xs[0] = 1; // OK, since xs mutable
let i = 4;
let vy = nums[i]; //fails (panics) at run-time

//[&str;3]

CMSC330 Summer 2025

Arrays: lteration

* Rust provides a way to iterate over a collection
— Including arrays

let a = [10,20,30,40,50];
for element in a.iter () {
println! ("the value is: {}", element);

}

— a.iter () produces an iterator, like a Java iterator
» This is a method call, a la Java. More about these later
— The special for syntax issues the .next () call until no
elements are left
* No possibility of running out of bounds

CMSC330 Summer 2025

Quiz: Will this function type check?

fn £f(n:[u32]) -> u32 {
n[0]
}

A. Yes
B. No

CMSC330 Summer 2025

Quiz: Will this function type check?

fn £f(n:[u32;1len]) -> u32 {
n[o0]
}
A. Yes fn f£(n:[u32;4]) -> u32 {
B. No — because n[0]
array length not }
known. Need to fn main() {
fillin 1en let a = [1, 2, 3, 4];

println! ("{:?}" , £(a));
}

CMSC330 Summer 2025

Testing

* |In any language, there is the need to test code

* |In most languages, testing requires extra libraries:
— Minitest in Ruby
— Ounit in Ocaml
— Junit in Java
« Testing in Rust is a first-class citizen!
— The testing framework is built into cargo

CMSC330 Summer 2025

Unit Testing In Rust

« Unit testing is for local or private functions
« Put such tests in the same file as your code

 Use assert! to test that something is true

* Use assert eq! to test that two things that implement
the PartialEq trait are equal

* E.g., integers, booleans, etc.
« We'll explain traits later on

CMSC330 Summer 2025

Unit Testing In Rust

This is a
module,

tests T

fn bad;add(a: 132, b: i32) -> i32 {
a-b Indicates that

} this module
contains tests
#0cfg (tesD)]

mod tests {

tes
fn test bad add() {
assert eq! (bad add(1,2),3);
}
}

CMSC330 Summer 2025

Indicates
that this
function is
a test

Integration Testing In Rust

 Integration testing is for APls and whole programs

Create a tests directory

Create different files for testing major functionality
Files don't need #[cfg(test)] or a special module
— But they do still need #[test] around each function

Tests refer to code as if it were an external library
— Declare it as an external library using extern crate

— Include the functionality you want to test with use

CMSC330 Summer 2025

Integration Testing In Rust

src/lib.rs

pub fn add(a: i32, b: i32)
a+b

-> 132 {

tests/test_add.rs

extern crate my-project-name;

use my-project-name::add;

#[test]

pub fn test_add() {
assert_eq! (add(1,2), 3));

}

#[test]

pub fn test negative add() {
assert _eq! (add(1,-2), -1));

}

CMSC330 Summer 2025

Running Tests

« cargo test runs all of your tests
e cargo test s runs all tests that contain s in the name

« By default, console output is hidden
 Use cargo test -- --nocapture to un-hide it

CMSC330 Summer 2025

Fun Fact

» The original Rust compiler was written in OCaml
— Betrays the sentiments of the language’s designers!

* Now the Rust compiler is written in ... Rust

— How is this possible? Through a process called bootstrapping:

» The first Rust compiler written in Rust is compiled by the Rust compiler
written in OCaml

» Now we can use the binary from the Rust compiler to compile itself

» We discard the OCaml compiler and just keep updating the binary through
self-compilation

« So don’t lose that binary! ©

CMSC330 Summer 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: What choice do programmers have?
	Slide 3: Rust: Type-safe (and Thread-safe), and Fast
	Slide 4: Rust in the Real World
	Slide 5: Features of Rust
	Slide 6: Installing Rust
	Slide 7: Rust Compiler, Build System
	Slide 8: Using cargo
	Slide 9: Rust, Interactively
	Slide 10: Rust Documentation
	Slide 11: Rust Basics
	Slide 12: Functions
	Slide 13: Let Statements
	Slide 14: Conditionals
	Slide 15: Conditionals are Expressions (like OCaml)
	Slide 16: Factorial in Rust (recursively)
	Slide 17: Quiz: What does this evaluate to?
	Slide 18: Quiz: What does this evaluate to?
	Slide 19: Quiz: What does this evaluate to?
	Slide 20: Quiz: What does this evaluate to?
	Slide 21: Using Mutation
	Slide 22: Other Looping Constructs
	Slide 23: Other Looping Constructs
	Slide 24: Quiz: What does this evaluate to?
	Slide 25: Quiz: What does this evaluate to?
	Slide 26: Data: Scalar Types
	Slide 27: Compound Data: Tuples
	Slide 28: Compound Data: Tuples
	Slide 29: Compound Data: Tuples
	Slide 30: Arrays: Standard Operations
	Slide 31: Arrays: Iteration
	Slide 32: Quiz: Will this function type check?
	Slide 33: Quiz: Will this function type check?
	Slide 34: Testing
	Slide 35: Unit Testing In Rust
	Slide 36: Unit Testing In Rust
	Slide 37: Integration Testing In Rust
	Slide 38: Integration Testing In Rust
	Slide 39: Running Tests
	Slide 40: Fun Fact

