CMSC 330: Organization of Programming
Languages

Ownership, References, and Lifetimes
In Rust

CMSC330 Summer 2025

Rust: GC-less Memory Management, Safely

* Rust's heap memory managed without GC

* Type checking ensures no dangling pointers or buffer
overflows
— unsafe idioms are disallowed

« Key features that ensure safety: ownership and lifetimes

— Data has a single owner. Immutable aliases OK, but mutation
only via owner or single mutable reference

— How long data is alive is determined by a lifetime

CMSC330 Summer 2025

Memory: the Stack and the Heap

 The stack

— constant-time, automatic (de)allocation

— Data size and lifetime must be known at compile-time
» Function parameters and locals of known (constant) size

 The heap

— Dynamically sized data, with non-fixed lifetime
 Slightly slower to access than stack; i.e., via a pointer

— GC: automatic deallocation, adds space/time overhead

— Manual deallocation (C/C++): low overhead, but non-trivial
opportunity for devastating bugs

» Dangling pointers, double free — instances of memory corruption

CMSC330 Summer 2025

Memory: the Stack and the Heap

Il C stack
char *p = malloc(10)

free(p);

Il Java
String p = new String(”rust");

null ;//GC will collect later —

p =
heap

CMSC330 Summer 2025 p is deleted from stack when the function terminates

Memory: the Stack and the Heap

stack
/Il Rust
let p = String::from("hello”) ; D
* Deleted when the owner p
IS out of scope.
« No manual free, no GC
heap

CMSC330 Summer 2025 p is deleted from stack when the function terminates

Rules of Ownership

1. Each value in Rust has a variable that's its owner

2. There can only be one owner at a time

3. When the owner goes out of scope, the value will be
dropped (freed)

{ let mut s = String::from("hello"); //s is the owner
s.push str(", world!");
println! ("{}", s);

} //s’s data is freed by calling s.drop()

string:. Dynamically sized, mutable data

CMSC330 Summer 2025

Assignment Transfers Ownership

* By default, an assignment moves data

let x
let y

String: :from("hello");
x; //x moved to y

A move leaves only one owner: y

println! ("{}, world!'", y); //ok
println! ("{}, world!", x); //fails

« Why? Both x and y may point to the same underlying data

x’s data
Move prevents double

free, Or USe-after-free
y’sda'ta////'7

CMSC330 Summer 2025

"hello"

Copy Trait

* Primitives do not transfer ownership on assignment
- i32, char, bool, £32, tuples of these types, etc.

let x = 5;
let v = x;
println! ("{}
println! (" {}

5", y); //ok
51", x); //ok

 Why? These derive the Copy trait
— Doing so says that an assignment copies the entire object

CMSC330 Summer 2025

Traits

« A Trait is a way of saying that a type has a particular property

— Copy: objects with this trait do not transfer ownership on assignment
* instead, assignment copies all of the object data

« Another way of using traits: to indicate functions that a type is
must implement (more later)
— Like Java interfaces

— Example: Deref built-in trait indicates that an object can be
dereferenced via * op; compiler calls object’s dere£() method

CMSC330 Summer 2025

Use clone() to make explicit copies

* Objects may be explicitly cloned
— Avoids loss of ownership, but at the cost of a copy

let x = String::from("hello");

let y = x.clone(); //x ownership not moved
println! ("{}, world!", y); //ok

println! ("{}, world!", x); //ok

CMSC330 Summer 2025

Ownership Transfer in Function Calls

fn main() {
let sl1 = String::from(“hello”);
let s2 = id(sl); //sl moved to arg
println! (“{}”,s2); //id’s result moved to s2
println! (“{}”,sl); //fails

}

fn id(s:String) -> String {
s // s moved to caller, on return

}

* On a call, ownership passes from:

— argument to called function’s parameter
— returned value to caller’s receiver

CMSC330 Summer 2025

References and Borrowing

« Create an alias by making a reference

— An explicit, non-owning pointer to the original value
— Called borrowing. Done with & operator

« References are immutable by default (can override)

fn main() {

let sl1 = String::from(“hello”);

let len = calc len(é&sl); //lends reference
println! (“the length of ‘{}’ is {}”,sl,len);
}
fn calc len(s: &String) -> usize ({

s.push str(“hi”); //fails! refs are immutable

s.len () // s dropped; but not its referent
}

CMSC330 Summer 2025

Quiz 1: Owner of str's data at HERE ?

CMSC330 Summer 2025

fn foo(str:String) -> usize {

let x = str;

let yv = &x;

let w = &y;

// HERE
}
/\. X let w = &y vs. let w = y;

There are a few other types I'd consider "primitive":

B. y « Immutable references (&T)
C 7 « Mutable references (&mut T)

. « Raw pointers (*const T/ *mut T)
D w Immutable references always implement Copy, mutable

references never implement Copy, and raw pointers always
implement Copy:

Quiz 1: Owner of str's data at HERE ?

fn foo(str:String) -> usize {
let x = str;

let yv = &x;
let w = &y;
// HERE

CMSC330 Summer 2025

Rules of References

1. At any given time, you can have either but not both of

— One mutable reference
— Any number of immutable references

2. References must always be valid (pointed-to value not
dropped)

CMSC330 Summer 2025

Borrowing and Mutation

« Make immutable references to mutable values

— Shares read-only access through owner and borrowed
references
« Same for immutable values
— Mutation disallowed on original value until borrowed
reference(s) dropped

{ let mut sl = String::from(“hello”) ;
{ let s2 = &sl;
println! ("String is {} and {}",sl,s2); //ok
sl.push str (" world!"); //disallowed
} //drops s2
sl.push str(" world!"); //ok
println! ("String is {}",sl);}//prints updated sl

CMSC330 Summer 2025

Mutable references

« To permit mutation via a reference, use &mut
— Instead of just &
— But only OK for mutable variables

let mut sl = String::from(“hello”) ;
{ let s2 = &sl;

s2 .push str(“ there”);//disallowed; s2 immut
} //s2 dropped
let s3 = amut sl; //ok since sl mutable
s3.push _str(“ there”); //ok since s3 mutable
println! (”String is {}”,s3); //ok

CMSC330 Summer 2025

Quiz 2: What does this evaluate to?

{ let mut sl = String::from(“Hello!'")
{
let s2 = &sl;
s2 .push str (“World!"“);
printlﬁT(“{}“, s2)
}

—

“Hello!”
“Hello! World!”
. Error

. “Hello!World!”

OO0 w >

CMSC330 Summer 2025

Quiz 2: What does this evaluate to?

{ let mut sl = String::from(“Hello!'")
{
let s2 = &sl;
s2 .push str (“World!"“);
printlﬁT(“{}“, s2)
}

—

“Hello!”
“Hello! World!”

. Error; s2 is not mut
. "Hello!'World!”

oo0w»

CMSC330 Summer 2025

Quiz 3: What is printed?

fn foo(s: &mut String) -> usize{
s.push str("Bob");
s.len ()

}

fn main() {
let mut sl = String::from("Alice");
println! ("{}",foo(&mut sl))

}

A. 0
B. 8
C. Error
D. 5

CMSC330 Summer 2025

Quiz 3: What is printed?

fn foo(s: &mut String) -> usize{
s.push str("Bob");
s.len ()

}

fn main() {
let mut sl = String::from("Alice");
println! ("{}",foo(&mut sl))

}

A. 0
B. 8
C. Error
D. 5

CMSC330 Summer 2025

Ownership and Mutable References

« Can make only one mutable reference

* Doing so blocks use of the original
— Restored when reference is dropped

let mut sl = String::from(“hello”) ;
{ let s2 = &mut sl; //ok
let s3 = amut sl; //fails: second borrow

ush str(“ there”); //fails: second borrow
} //s2 dropped; sl is first-class owner again
sl.push str(“ there”); //ok

println! (”String is {}”,sl); //ok

But: see
implicit borrow next slide
(self is a reference)

CMSC330 Summer 2025

Update: Non Lexical Lifetimes (NLL)

* Rust has been updated to support lifetimes that end

before the surrounding scope:

— http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-
lifetimes-arrives-for-everyone/

let mut sl = String::from(“hello”) ;
{ let s2 = amut sl; //ignored - never used
let s3 = amut sl; //ignored - never used
sl.push str(“ there”); //OK!
s2.push str(“ there”); //fails - 2 mutable refs
} //s2 dropped; sl is first-class owner again
sl.push str(“ there”); //ok
println! (”“String is {}”,sl); //ok

CMSC330 Summer 2025

http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/

The * Operator

« Given a value of type T& (or Temut) use the * operator
to read or write its underlying contents

let mut x = 2;

let mut y = 3;

let mut r = &mut x;
*r = 4;

r = &mut y;

*r = 5;

— Note two uses of mut for r, with different meanings!

CMSC330 Summer 2025

Immutable and Mutable References

e Cannot make a mutable reference if immutable
references exist

— Holders of an immutable reference assume the object will not
change!

let mut sl = String::from(“hello”) ;

{ let s2 = &sl; //ok: s2 is immutable
let s3 = &sl; //ok: multiple imm. refs allowed
let s4 = amut sl; //fails: imm ref already

} //s2-s4 dropped; sl is owner again
sl.push str(“ there”); //ok
println! (”“String is {}”,sl); //ok

CMSC330 Summer 2025

Aside: Generics and Polymorphism

* Rust has support like that of Java and OCaml
— Example: The std library defines Vec<T> where T can be

instantiated with a variety of types
« Vec<char> is a vector of characters

« Vec<&str> is a vector of string slices

* You can define polymorphic functions, too

— Rust: fn id<T>(x:T) -> T { x }
— Java: static <T> T id(T x) { return x; }
— Ocaml: let id x = x

* More later...

CMSC330 Summer 2025

Lifetimes: Avoiding Dangling References

« References must always be to valid memory

— Not to memory that has been dropped
fn main() {
let ref invalid = dangle();
println! (“what will happen .. {}”,ref invalid);
}
fn dangle() -> &String {
let sl = String::from(“hello”);
&sl
} // bad! sl’s value has been dropped

— Rust will disallow this using a concept called lifetimes

» A lifetime is a type-level parameter that names the scope in which the data
is valid

CMSC330 Summer 2025

Lifetimes: OK Usage

 Lifetime corresponds with scope
{ _

}et r =5 _ r's lifetime ‘a
let x = &r; } x’s lifetime b
println! (“r: {}”,xr); //ok
} OK:
\ Xx«<—rand b <‘a

* Variable x in scope while r is

— A lifetime is a type variable that identifies a scope
— r’s lifetime ‘a exceeds x’s lifetime ‘b

CMSC330 Summer 2025

Lifetimes: Preventing Dangling Refs

« Slightly changing the example

{

}

let r;
{

let x = 5;

r =

}

println! (“r:

&X;

{}",x);

// deferred init

//fails

— r’s lifetime ‘a
} x’s lifetime b

Not OK:

—

r—xbuta<™b

» Variable x goes out of scope while r still exists
— r’s lifetime ‘a exceeds x’s lifetime ‘b so not safe to assign xto r

CMSC330 Summer 2025

Quiz 4: What is printed?

{ let mut s = &String::from("dog") ;
{
let y = String::from("hi") ;
s = &y,
}

println! ("s: {}",s);

A. dog

B. hi

C. Error —y is immutable

D. Error — y dropped while still borrowed

CMSC330 Summer 2025

Quiz 4: What is printed?

{ let mut s = &String::from("dog") ;
{
let y = String::from("hi") ;
s = &y,
}

println! ("s: {}",s);

A. dog

B. hi

C. Error —y is immutable

D. Error — y dropped while still borrowed

CMSC330 Summer 2025

Lifetimes and Functions

 Lifetime of a reference not always explicit
— E.g., when passed as an argument to a function

R —

fn longest(x:&str, y:&str) -> ty {

if x.len() > y.len() { x } else { y }

}

— What could go wrong here?

CMSC330 Summer 2025

{ let x = String::from(“hi”) ;
let z;
{ let y = String: :from(“there”);
z = longest(&x,&y); //will be &y
} //drop y, and thereby z
println! (“z = {}”,2z);//yikes!
}

String slice
(more later)

Lifetime Parameters

« Each reference to a value of type f has a lifetime parameter
- &t (and emut t) — lifetime is implicit
- &’a t(and &’ amut t)— lifetime 'a is explicit

* Where do the lifetime names come from?
— When left implicit, they are generated by the compiler
— Global variables have lifetime

 Lifetimes can also be generic

fn longest< 'a>(x:& str, y:& str) -> & str {
if x.len() > y.len() { x } else { y }

}
— Thus: x and y must have the same lifetime, and the returned
reference shares it

CMSC330 Summer 2025

Lifetimes FAQ

 When do we use explicit lifetimes?

— When more than one var/type needs the same lifetime (like
the 1longest function)

 How do | tell the compiler exactly which lines of code
lifetime 'a covers?

— You can't. The compiler will (always) figure it out

CMSC330 Summer 2025

Lifetimes FAQ

 How does lifetime subsumption work?

— If lifetime 'a is longer than 'b, we can use 'a where 'b is
expected; can require this with 'b: 'a.

* Permits us to call longest (&x, &y) when x and y have different
lifetimes, but one outlives the other

— Just like subtyping/subsumption in OO programming

« Can we use lifetimes in data definitions?

— Yes; we will see this later when we define structs,
enums, etc.

CMSC330 Summer 2025

Recap: Rules of References

1. At any given time, you can have either but not both of

— One mutable reference
— Any number of immutable references

2. References must always be valid
— A reference must never outlive its referent

CMSC330 Summer 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Rust: GC-less Memory Management, Safely
	Slide 3: Memory: the Stack and the Heap
	Slide 4: Memory: the Stack and the Heap
	Slide 5: Memory: the Stack and the Heap
	Slide 6: Rules of Ownership
	Slide 7: Assignment Transfers Ownership
	Slide 8: Copy Trait
	Slide 9: Traits
	Slide 10: Use clone() to make explicit copies
	Slide 11: Ownership Transfer in Function Calls
	Slide 12: References and Borrowing
	Slide 13: Quiz 1: Owner of str’s data at HERE ?
	Slide 14: Quiz 1: Owner of str’s data at HERE ?
	Slide 15: Rules of References
	Slide 16: Borrowing and Mutation
	Slide 17: Mutable references
	Slide 18: Quiz 2: What does this evaluate to?
	Slide 19: Quiz 2: What does this evaluate to?
	Slide 20: Quiz 3: What is printed?
	Slide 21: Quiz 3: What is printed?
	Slide 22: Ownership and Mutable References
	Slide 23: Update: Non Lexical Lifetimes (NLL)
	Slide 24: The * Operator
	Slide 25: Immutable and Mutable References
	Slide 26: Aside: Generics and Polymorphism
	Slide 27: Lifetimes: Avoiding Dangling References
	Slide 28: Lifetimes: OK Usage
	Slide 29: Lifetimes: Preventing Dangling Refs
	Slide 30: Quiz 4: What is printed?
	Slide 31: Quiz 4: What is printed?
	Slide 32: Lifetimes and Functions
	Slide 33: Lifetime Parameters
	Slide 34: Lifetimes FAQ
	Slide 35: Lifetimes FAQ
	Slide 36: Recap: Rules of References

