
CMSC 330: Organization of Programming

Languages

Ownership, References, and Lifetimes

in Rust

CMSC330 Summer 2025

Rust: GC-less Memory Management, Safely

• Rust’s heap memory managed without GC

• Type checking ensures no dangling pointers or buffer

overflows

– unsafe idioms are disallowed

• Key features that ensure safety: ownership and lifetimes

– Data has a single owner. Immutable aliases OK, but mutation

only via owner or single mutable reference

– How long data is alive is determined by a lifetime

CMSC330 Summer 2025

Memory: the Stack and the Heap

• The stack

– constant-time, automatic (de)allocation

– Data size and lifetime must be known at compile-time

• Function parameters and locals of known (constant) size

• The heap

– Dynamically sized data, with non-fixed lifetime

• Slightly slower to access than stack; i.e., via a pointer

– GC: automatic deallocation, adds space/time overhead

– Manual deallocation (C/C++): low overhead, but non-trivial

opportunity for devastating bugs
• Dangling pointers, double free – instances of memory corruption

CMSC330 Summer 2025

Memory: the Stack and the Heap

// C
char *p = malloc(10)

…

free(p);

stack

heap

p

// Java
String p = new String(”rust");

…

p = null;//GC will collect later

p is deleted from stack when the function terminates CMSC330 Summer 2025

Memory: the Stack and the Heap

// Rust
let p = String::from("hello”);

…

stack

heap

p

p is deleted from stack when the function terminates

• Deleted when the owner p

is out of scope.

• No manual free, no GC

CMSC330 Summer 2025

Rules of Ownership

1. Each value in Rust has a variable that’s its owner

2. There can only be one owner at a time

3. When the owner goes out of scope, the value will be

dropped (freed)

CMSC330 Summer 2025

{ let mut s = String::from("hello"); //s is the owner

 s.push_str(", world!");

 println!("{}", s);

} //s’s data is freed by calling s.drop()

String: Dynamically sized, mutable data

Assignment Transfers Ownership

• By default, an assignment moves data

• A move leaves only one owner: y

• Why? Both x and y may point to the same underlying data

let x = String::from("hello");

let y = x; //x moved to y

Move prevents double
free, or use-after-free

CMSC330 Summer 2025

println!("{}, world!", y); //ok

println!("{}, world!", x); //fails

x’s data

y’s data

"hello"

Copy Trait

• Primitives do not transfer ownership on assignment

– i32, char, bool, f32, tuples of these types, etc.

• Why? These derive the Copy trait

– Doing so says that an assignment copies the entire object

CMSC330 Summer 2025

let x = 5;

let y = x;

println!("{} = 5!", y); //ok

println!("{} = 5!", x); //ok

Traits

• A Trait is a way of saying that a type has a particular property

– Copy: objects with this trait do not transfer ownership on assignment

• instead, assignment copies all of the object data

• Another way of using traits: to indicate functions that a type is

must implement (more later)

– Like Java interfaces

– Example: Deref built-in trait indicates that an object can be

dereferenced via * op; compiler calls object’s deref() method

CMSC330 Summer 2025

Use clone() to make explicit copies

• Objects may be explicitly cloned

– Avoids loss of ownership, but at the cost of a copy

let x = String::from("hello");

let y = x.clone(); //x ownership not moved

println!("{}, world!", y); //ok

println!("{}, world!", x); //ok

CMSC330 Summer 2025

Ownership Transfer in Function Calls

• On a call, ownership passes from:

– argument to called function’s parameter

– returned value to caller’s receiver

fn main() {

 let s1 = String::from(“hello”);

 let s2 = id(s1); //s1 moved to arg

 println!(“{}”,s2); //id’s result moved to s2

 println!(“{}”,s1); //fails

}

fn id(s:String) -> String {

 s // s moved to caller, on return

}

CMSC330 Summer 2025

References and Borrowing

• Create an alias by making a reference

– An explicit, non-owning pointer to the original value

– Called borrowing. Done with & operator

• References are immutable by default (can override)

fn main() {

 let s1 = String::from(“hello”);

 let len = calc_len(&s1); //lends reference

 println!(“the length of ‘{}’ is {}”,s1,len);

}

fn calc_len(s: &String) -> usize {

 s.push_str(“hi”); //fails! refs are immutable

 s.len() // s dropped; but not its referent

}

CMSC330 Summer 2025

A. x

B. y

C. z

D. w

fn foo(str:String) -> usize {

let x = str;

let y = &x;

let w = &y;

// HERE

}

Quiz 1: Owner of str’s data at HERE ?

CMSC330 Summer 2025

let w = &y vs. let w = y;

There are a few other types I'd consider "primitive":

• Immutable references (&T)

• Mutable references (&mut T)

• Raw pointers (*const T / *mut T)

Immutable references always implement Copy, mutable

references never implement Copy, and raw pointers always

implement Copy:

A. x

B. y

C. z

D. w

fn foo(str:String) -> usize {

let x = str;

let y = &x;

let w = &y;

// HERE

}

Quiz 1: Owner of str’s data at HERE ?

CMSC330 Summer 2025

Rules of References

1. At any given time, you can have either but not both of

– One mutable reference

– Any number of immutable references

2. References must always be valid (pointed-to value not

dropped)

CMSC330 Summer 2025

Borrowing and Mutation

• Make immutable references to mutable values

– Shares read-only access through owner and borrowed

references

• Same for immutable values

– Mutation disallowed on original value until borrowed

reference(s) dropped

{ let mut s1 = String::from(“hello”);

 { let s2 = &s1;

 println!("String is {} and {}",s1,s2); //ok

s1.push_str(" world!"); //disallowed

 } //drops s2

 s1.push_str(" world!"); //ok

 println!("String is {}",s1);}//prints updated s1

CMSC330 Summer 2025

Mutable references

• To permit mutation via a reference, use &mut

– Instead of just &

– But only OK for mutable variables

let mut s1 = String::from(“hello”);

{ let s2 = &s1;

 s2.push_str(“ there”);//disallowed; s2 immut

} //s2 dropped

let s3 = &mut s1; //ok since s1 mutable

s3.push_str(“ there”); //ok since s3 mutable

println!(”String is {}”,s3); //ok

CMSC330 Summer 2025

A. “Hello!”

B. “Hello! World!”

C. Error

D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);

{

let s2 = &s1;

s2.push_str(“World!“);

println!(“{}“, s2)

}

}

Quiz 2: What does this evaluate to?

CMSC330 Summer 2025

A. “Hello!”

B. “Hello! World!”

C. Error; s2 is not mut

D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);

{

let s2 = &s1;

s2.push_str(“World!“);

println!(“{}“, s2)

}

}

Quiz 2: What does this evaluate to?

CMSC330 Summer 2025

A. 0

B. 8

C. Error

D. 5

fn foo(s: &mut String) -> usize{

s.push_str("Bob");

s.len()

}

fn main() {

let mut s1 = String::from("Alice");

println!("{}",foo(&mut s1))

}

Quiz 3: What is printed?

CMSC330 Summer 2025

A. 0

B. 8

C. Error

D. 5

fn foo(s: &mut String) -> usize{

s.push_str("Bob");

s.len()

}

fn main() {

let mut s1 = String::from("Alice");

println!("{}",foo(&mut s1))

}

Quiz 3: What is printed?

CMSC330 Summer 2025

Ownership and Mutable References

• Can make only one mutable reference

• Doing so blocks use of the original

– Restored when reference is dropped

let mut s1 = String::from(“hello”);

{ let s2 = &mut s1; //ok

 let s3 = &mut s1; //fails: second borrow

 s1.push_str(“ there”); //fails: second borrow

} //s2 dropped; s1 is first-class owner again

s1.push_str(“ there”); //ok

println!(”String is {}”,s1); //ok

implicit borrow
(self is a reference)

CMSC330 Summer 2025

But: see

next slide

Update: Non Lexical Lifetimes (NLL)

• Rust has been updated to support lifetimes that end

before the surrounding scope:
– http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-

lifetimes-arrives-for-everyone/

let mut s1 = String::from(“hello”);

{ let s2 = &mut s1; //ignored – never used

 let s3 = &mut s1; //ignored – never used

 s1.push_str(“ there”); //OK!

 s2.push_str(“ there”); //fails – 2 mutable refs

} //s2 dropped; s1 is first-class owner again

s1.push_str(“ there”); //ok

println!(”String is {}”,s1); //ok

CMSC330 Summer 2025

http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/
http://blog.pnkfx.org/blog/2019/06/26/breaking-news-non-lexical-lifetimes-arrives-for-everyone/

The * Operator

• Given a value of type T& (or T&mut) use the * operator

to read or write its underlying contents

– Note two uses of mut for r, with different meanings!

CMSC330 Summer 2025

let mut x = 2;

let mut y = 3;

let mut r = &mut x;

*r = 4;

r = &mut y;

*r = 5;

Immutable and Mutable References

• Cannot make a mutable reference if immutable

references exist

– Holders of an immutable reference assume the object will not

change!

let mut s1 = String::from(“hello”);

{ let s2 = &s1; //ok: s2 is immutable

 let s3 = &s1; //ok: multiple imm. refs allowed

 let s4 = &mut s1; //fails: imm ref already

} //s2-s4 dropped; s1 is owner again

s1.push_str(“ there”); //ok

println!(”String is {}”,s1); //ok

CMSC330 Summer 2025

Aside: Generics and Polymorphism

• Rust has support like that of Java and OCaml

– Example: The std library defines Vec<T> where T can be

instantiated with a variety of types
• Vec<char> is a vector of characters

• Vec<&str> is a vector of string slices

• You can define polymorphic functions, too

– Rust:

– Java:

– Ocaml:

• More later…

fn id<T>(x:T) -> T { x }

let id x = x

static <T> T id(T x) { return x; }

CMSC330 Summer 2025

Lifetimes: Avoiding Dangling References

• References must always be to valid memory

– Not to memory that has been dropped

– Rust will disallow this using a concept called lifetimes

• A lifetime is a type-level parameter that names the scope in which the data

is valid

fn main() {

 let ref_invalid = dangle();

 println!(“what will happen … {}”,ref_invalid);

}

fn dangle() -> &String {

 let s1 = String::from(“hello”);

 &s1

} // bad! s1’s value has been dropped

CMSC330 Summer 2025

Lifetimes: OK Usage

• Lifetime corresponds with scope

• Variable x in scope while r is

– A lifetime is a type variable that identifies a scope

– r’s lifetime ‘a exceeds x’s lifetime ‘b

{

 let r = 5;

 {

 let x = &r;

 println!(“r: {}”,r); //ok

 }

}

x’s lifetime ‘b

r’s lifetime ‘a

OK:

x ⟵ r and ‘b ≤ ‘a

CMSC330 Summer 2025

Lifetimes: Preventing Dangling Refs

• Slightly changing the example

• Variable x goes out of scope while r still exists

– r’s lifetime ‘a exceeds x’s lifetime ‘b so not safe to assign x to r

{

 let r; // deferred init

 {

 let x = 5;

 r = &x;

 }

 println!(“r: {}”,r); //fails

}

x’s lifetime ‘b

r’s lifetime ‘a

Not OK:

r ⟵ x but ‘a ≰ ‘b

CMSC330 Summer 2025

A. dog

B. hi

C. Error – y is immutable

D. Error – y dropped while still borrowed

{ let mut s = &String::from("dog");

{

let y = String::from("hi");

s = &y;

}

println!("s: {}",s);

}

Quiz 4: What is printed?

CMSC330 Summer 2025

Quiz 4: What is printed?

{ let mut s = &String::from("dog");

{

let y = String::from("hi");

s = &y;

}

println!("s: {}",s);

}

A. dog

B. hi

C. Error – y is immutable

D. Error – y dropped while still borrowed

CMSC330 Summer 2025

Lifetimes and Functions

• Lifetime of a reference not always explicit

– E.g., when passed as an argument to a function

– What could go wrong here?

fn longest(x:&str, y:&str) -> &str {

 if x.len() > y.len() { x } else { y }

}

{ let x = String::from(“hi”);

 let z;

 { let y = String::from(“there”);

 z = longest(&x,&y); //will be &y

 } //drop y, and thereby z

 println!(“z = {}”,z);//yikes!

}

String slice

(more later)

CMSC330 Summer 2025

Lifetime Parameters

• Each reference to a value of type t has a lifetime parameter

– &t (and &mut t) – lifetime is implicit

– &’a t (and &’a mut t) – lifetime ‘a is explicit

• Where do the lifetime names come from?

– When left implicit, they are generated by the compiler

– Global variables have lifetime ‘static

• Lifetimes can also be generic

– Thus: x and y must have the same lifetime, and the returned

reference shares it

fn longest<‘a>(x:&‘a str, y:&‘a str) -> &‘a str {

 if x.len() > y.len() { x } else { y }

}

CMSC330 Summer 2025

Lifetimes FAQ

• When do we use explicit lifetimes?

– When more than one var/type needs the same lifetime (like
the longest function)

• How do I tell the compiler exactly which lines of code
lifetime 'a covers?

– You can't. The compiler will (always) figure it out

CMSC330 Summer 2025

Lifetimes FAQ

• How does lifetime subsumption work?

– If lifetime 'a is longer than 'b, we can use 'a where 'b is

expected; can require this with 'b: 'a.

• Permits us to call longest(&x,&y) when x and y have different

lifetimes, but one outlives the other

– Just like subtyping/subsumption in OO programming

• Can we use lifetimes in data definitions?

– Yes; we will see this later when we define structs,

enums, etc.

CMSC330 Summer 2025

Recap: Rules of References

1. At any given time, you can have either but not both of

– One mutable reference

– Any number of immutable references

2. References must always be valid

– A reference must never outlive its referent

CMSC330 Summer 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Rust: GC-less Memory Management, Safely
	Slide 3: Memory: the Stack and the Heap
	Slide 4: Memory: the Stack and the Heap
	Slide 5: Memory: the Stack and the Heap
	Slide 6: Rules of Ownership
	Slide 7: Assignment Transfers Ownership
	Slide 8: Copy Trait
	Slide 9: Traits
	Slide 10: Use clone() to make explicit copies
	Slide 11: Ownership Transfer in Function Calls
	Slide 12: References and Borrowing
	Slide 13: Quiz 1: Owner of str’s data at HERE ?
	Slide 14: Quiz 1: Owner of str’s data at HERE ?
	Slide 15: Rules of References
	Slide 16: Borrowing and Mutation
	Slide 17: Mutable references
	Slide 18: Quiz 2: What does this evaluate to?
	Slide 19: Quiz 2: What does this evaluate to?
	Slide 20: Quiz 3: What is printed?
	Slide 21: Quiz 3: What is printed?
	Slide 22: Ownership and Mutable References
	Slide 23: Update: Non Lexical Lifetimes (NLL)
	Slide 24: The * Operator
	Slide 25: Immutable and Mutable References
	Slide 26: Aside: Generics and Polymorphism
	Slide 27: Lifetimes: Avoiding Dangling References
	Slide 28: Lifetimes: OK Usage
	Slide 29: Lifetimes: Preventing Dangling Refs
	Slide 30: Quiz 4: What is printed?
	Slide 31: Quiz 4: What is printed?
	Slide 32: Lifetimes and Functions
	Slide 33: Lifetime Parameters
	Slide 34: Lifetimes FAQ
	Slide 35: Lifetimes FAQ
	Slide 36: Recap: Rules of References

