
CMSC 330: Organization of Programming 

Languages

Strings, Slices, Vectors, HashMaps

in Rust

CMSC 330 Spring 2025



String Representation

• Rust’s String is a 3-tuple

– A pointer to a byte array (interpreted as UTF-8)

– A (current) length

– A (maximum) capacity Always: length ≤ capacity

CMSC 330 Spring 2025

String pointed-to data is 

dropped when the owner is



String Representation

• Rust’s String is a 3-tuple

– A pointer to a byte array (interpreted as UTF-8)

– A (current) length

– A (maximum) capacity

• Always: length ≤ capacity

CMSC 330 Spring 2025

let mut s = String::new();

println!("{}", s.capacity());

for _ in 0..5 {

  s.push_str("hello");

  println!("{},{}", 

    s.len(),s.capacity());

}

Prints

0

5,5

10,10

15,20

20,20

25,40

Code



UTF-8 and Rust Strings

• UTF-8 is a variable length character encoding

– The first 128 characters (US-ASCII) need one byte

– The next 1,920 characters need two bytes, which covers the 

remainder of almost all Latin-script alphabets, … up to 4 bytes

• You may not index a string directly; Rust stops you

– You could end up in the middle of a character!

         let s1 = String::from("hello");

    let h = s1[0]; // rejected 

CMSC 330 Spring 2025



Slice: Shared Data, Separate Metadata

• What we want is to have 

both strings share the 

same underlying data

• Happily, Rust’s 

containers permit a way 

to reference a portion of 

an object’s contents

– These are called slices

CMSC 330 Spring 2025

String slice

String



String Slices in Rust

• If s is a String, then &s[range] is a string slice, where 

range can be as follows

– i..j is the range from i to j, inclusive

– i.. is the range from i to the current length

– ..j is the range from 0 to j

– .. is the range from 0 to the current length

• &str is the type of a String slice

CMSC 330 Spring 2025



String Slice Example

• Here’s first_word in Rust, using slices:

– If we used s.as_bytes() we could end up examining one byte 

of a multi-byte character, due to the UTF-8 encoding

CMSC 330 Spring 2025

pub fn first_word (s: &String) -> &str {

  for (i, item) in s.char_indices() {

    if item == ' ' {

      return &s[0..i];

    }

  }

  s.as_str()  

}



String Slices and Ownership

• A &str slice borrows from the original string

– Just like an immutable String reference

– This prevents dangling pointers

• Recall borrowing rules:

CMSC 330 Spring 2025

let mut s = String::from("hello world");

let word = first_word(&s); //borrow

s.clear(); // Error! Can’t take mut ref

let b = &s[..];

let c = &s[..];

print!("{}{}", b, c);
let b = &mut s[..];

let c = &mut s[..]; //error

print!("{}{}", b, c);

• Multiple immutable refs, or

• Only one mutable ref (no immut ones)



Quiz 1: What is the output?

let s = String::from("Rust is fun!");

let h = &s[0..4];

println!("{}",h);

CMSC 330 Spring 2025

A. Rust

B. is

C. fun!

D. Type Error



Quiz 1: What is the output?

let s = String::from("Rust is fun!");

let h = &s[0..4];

println!("{}",h);

CMSC 330 Spring 2025

A. Rust

B. is

C. fun!

D. Type Error



String Slices are (should be) the Default

• String literals are slices

– Variable s is not the owner of this string data

• the compiler establishes a static owner to permit free immutable sharing 

– Strings do own their data; useful if you want to modify it

• Should use slices where possible

– E.g., earlier example: fn first_word(s:&str) -> &str

• Can convert String s to a slice via &s[..]. Oftentimes, this coercion is 

done automatically (due to Deref trait)

CMSC 330 Spring 2025

let s:&str = "hello world";



Quiz 2: What is the output?

let mut s1 = String::from("Hello");

let s2 = " World";

s1.push_str(s2);

print!("{}",s2);

CMSC 330 Spring 2025

A. World

B. Hello World

C. Error because s2 transferred the ownership



Quiz 2: What is the output?

let mut s1 = String::from("Hello");

let s2 = " World";

s1.push_str(s2);

print!("{}",s2);

CMSC 330 Spring 2025

A. World. push_str() function does not take the ownership of the parameter

B. Hello World

C. Error because s2 transferred the ownership



Quiz 3: What is the output?

let s1 = String::from(”CMSC");

let s3; //deferred init

{

  let s2 = String::from(”330");

  s3 = s1+&s2;

}

print!("{}",s3);

print!("{}",s1);

CMSC 330 Spring 2025

A. CMSC330

B. CMSC

C. CMSC330CMSC

D. Error.



Quiz 3: What is the output?

let s1 = String::from(”CMSC");

let s3; //deferred init

{

  let s2 = String::from(”330");

  s3 = s1+&s2;

}

print!("{}",s3);

print!("{}",s1);

CMSC 330 Spring 2025

A. CMSC330

B. CMSC

C. CMSC330CMSC

D. Error. s1 lost ownership



Vectors: Basics

• Vec<T> in Rust is Arraylist<T> in Java

• Indexing can fail (panic) or return an Option

{ let mut v:Vec<i32> = Vec::new();

  v.push(1); // adds 1 to v

  v.push(“hi”); //error – v contains i32s

  let w = vec![1, 2, 3]; //vec! is a macro

} // v,w and their elements dropped

let v = vec![1, 2, 3, 4, 5]; 

let third:&i32 = &v[2]; //panics if OOB 

let third:Option<&i32> = v.get(2); //None if OOB

https://doc.rust-lang.org/book/second-edition/ch08-01-vectors.html

CMSC 330 Spring 2025



Aside: Options

• Option<T> is an enumerated type, like an OCaml variant

– Some(v) and None are possible values

• We’ll see more about enumerated types later

– For now, follow your nose

let v = vec![1, 2, 3, 4, 5]; 

let third: Option<&i32> = v.get(2);

let z = 

  match third {

    Some(i) => Some(i+1), //matches here

    None => None

  };

CMSC 330 Spring 2025



Vectors: Updates and Iteration

– If we remove the {} block around the def of p, above, then the 

code fails

• Not allowed to print via a while mutable borrow p is out

– Iterator variable can be mutable or immutable:

let mut a = vec![10, 20, 30, 40, 50];     

{ let p = &mut a[1]; //mutable borrow

  *p = 2; //updates a[1]

}//ownership restored

println!("vector contains {:?}",&a);

let mut v = vec![100, 32, 57]; 

for i in &v { println!("{}", i); }

for i in &mut v { *i += 50; }

CMSC 330 Spring 2025



Vector and Strings

• Like Strings, vectors can have slices

• Strings implemented internally as a Vec<u8>

– But: don’t mess with the byte-level representation of UTF-8 

strings.

let a = vec![10, 20, 30, 40, 50];

let b = &a[1..3]; //[20,30]

let c = &b[1];    //30

println!("{}",c); //prints 30

CMSC 330 Spring 2025



HashMaps

• HashMap<K,V> has the expected methods (roughly – see 

manual for gory details)

– new : ()  -> HashMap<K,V>

– insert : (K,V) -> Option<V>

– get : (&K) -> Option<&V>

• See also 

– get_mut, entry, and or_insert

https://doc.rust-lang.org/std/collections/struct.HashMap.html

https://doc.rust-lang.org/book/second-edition/ch08-03-hash-maps.html

CMSC 330 Spring 2025



Quiz 4: What is the output?

use std::collections::HashMap;

fn main(){

  let mut h = HashMap::new();

  h.insert("Alice", "1");

  h.insert("Bob", "2");

  match h.get(&”Alice") {

    Some(&id) => println!(”Alice:{}",id),

    _ => println!("Not Found"),

  }

}

CMSC 330 Spring 2025

A. Alice:1

B. Not Found

C. Error



Quiz 4: What is the output?

use std::collections::HashMap;

fn main(){

  let mut h = HashMap::new();

  h.insert("Alice", "1");

  h.insert("Bob", "2");

  match h.get(&”Alice") {

    Some(&id) => println!(”Alice:{}",id),

    _ => println!("Not Found"),

  }

}

CMSC 330 Spring 2025

A. Alice:1

B. Not Found

C. Error


	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: String Representation
	Slide 3: String Representation
	Slide 4: UTF-8 and Rust Strings
	Slide 6: Slice: Shared Data, Separate Metadata
	Slide 7: String Slices in Rust
	Slide 8: String Slice Example
	Slide 9: String Slices and Ownership
	Slide 10: Quiz 1: What is the output?
	Slide 11: Quiz 1: What is the output?
	Slide 12: String Slices are (should be) the Default
	Slide 13: Quiz 2: What is the output?
	Slide 14: Quiz 2: What is the output?
	Slide 15: Quiz 3: What is the output?
	Slide 16: Quiz 3: What is the output?
	Slide 17: Vectors: Basics
	Slide 18: Aside: Options
	Slide 19: Vectors: Updates and Iteration
	Slide 20: Vector and Strings
	Slide 21: HashMaps
	Slide 22: Quiz 4: What is the output?
	Slide 23: Quiz 4: What is the output?

