CMSC 330: Organization of Programming
Languages

Memory Management and Garbage
Collection

CMSC330 Summer 2025

Memory Attributes

» Memory to store data in programming languages has the
following lifecycle

» Allocation
* When the memory is allocated to the program

» Lifetime
* How long allocated memory is used by the program

CMSC330 Summer 2025

Memory Management in C

int g = 5; Static memory — (global
variable g) at a fixed

int *foo (int
(y) | address, never freed

int *z = malloc(sizeof (int)) ;
*z = y+g;
return z;
}
int main() {
int *p = foo(3);
free(p) ;

CMSC330 Summer 2025

Memory Management in C

int g = 5;
int *foo(int y) {

int *z malloc (sizeof (int)) ;
*z = y+g;
return z;
}
int main() {
int *p = foo(3);
free(p) ;

CMSC330 Summer 2025

Static memory — (global
variable g) at a fixed
address, never freed

LIFO/stack memory —
(parameter vy, local
variables p, z) allocated at
start of function call, freed
when function returns

Memory Management in C

int g = 5;

int *foo(int y) {

int *z
*z = yt+g;
return z;

}
int main ()
int *p =

free(p);

CMSC330 Summer 2025

malloc (sizeof (int)) ;

{
foo (3) ;

Static memory — (global
variable g) at a fixed
address, never freed

LIFO/stack memory —
(parameter vy, local
variables p, z) allocated at
start of function call, freed
when function returns

Heap memory — allocated
when needed (by malloc),
and freed (by free) when
no longer needed

Memory Management in Ruby, Java, OCaml

» Local variables live on the stack
e Storage reclaimed when method returns

» Objects, closures, tuples, etc. live on the heap

* Ruby, Java: Created with calls to Class.new
e OCaml: Allocation happens implicitly

» Heap objects never explicitly freed: automatic memory
management (garbage collection)

CMSC330 Summer 2025

Manual vs. Automatic Recovery

» Manual memory management is
 Efficient — requires less storage overall

* Error prone — programmers can easily make mistakes, leading to
leaks and use-after-free errors, which have security ramifications

» Automatic memory management is

* Less efficient — in space usage and latency — than manual
management

* Easy to use, more compositional — no worries about when an
object is truly dead
» Avoids security problems

CMSC330 Summer 2025

Automatic memory management

» Primary goal: automatically reclaim dynamic memory
e Secondary goal: avoid fragmentation

HEAP BEFORE

HEAP AFTER

EREE

- - free space

v

Insight: You can do reclamation and avoid fragmentation (next

slide) if you can identify every pointer in a program
* You can move the allocated storage, then redirect pointers to it

» Compact it, to avoid fragmentation

* Compiler ensures perfect knowledge LISP, OCAML, Java, Prolog but
not in C, C++, Pascal, Ada

CMSC330 Summer 2025

Fragmentation

» Another memory management problem

» Example sequence of calls
allocate(a);

allocate(x);
allocate(y); g
free(a);
allocate(z); Y

size
of b

free(y);
allocate(b);
= Not enough contiguous space for b

CMSC330 Summer 2025

Strategy

» At any point during execution, can divide the objects in the
heap into two classes

* Live objects will be used later

* Dead objects will never be used again
> They are “garbage”

» Thus we need garbage collection (GC) algorithms that can
1.Distinguish live from dead objects
2.Reclaim the dead objects and retain the live ones

CMSC330 Summer 2025 10

Determining Liveness

» In most languages we can’t know for sure which objects
are really live or dead
* Undecidable, like solving the halting problem

» Thus we need to make a safe approximation
* OKif we decide something is live when it's not
* But we'd better not deallocate an object that will be used later on

CMSC330 Summer 2025 11

Liveness by Reachability

» An object is reachable if it can be accessed by
dereferencing (“chasing”) pointers from live data

» Safe policy: delete unreachable objects
* An unreachable object can never be accessed again by the
program
» The object is definitely garbage
* A reachable object may be accessed in the future

» The object could be garbage but will be retained anyway
» Could lead to memory leaks

CMSC330 Summer 2025 12

Roots

» At a given program point, we define liveness as being data
reachable from the root set

* Global variables
> What are these in Java? Ruby? OCaml?

e Local variables of all live method activations
> |.e., the stack

» At the machine level

* Also consider the register set
» Usually stores local or global variables

» Next
* Techniques for determining reachability

CMSC330 Summer 2025 13

Reference Counting

» |dea: Each object has count of number of pointers to it
from the roots or other objects
* When count reaches 0, object is unreachable
e Count tracking code may be manual or automatic
» In regular use

 C++ and Rust (manual: smart pointers), Cocoa (manual), Python
(automatic)

» Invented by Collins in 1960

* A method for overlapping and erasure of lists. Communications
of the ACM, December 1960

CMSC330 Summer 2025 14

Reference Counting Example

stack

A2

CMSC330 Summer 2025

15

Reference Counting Example (cont.)

stack

AZ1

CMSC330 Summer 2025

16

Reference Counting Example (cont.)

stack

AZ1

CMSC330 Summer 2025

17

Reference Counting Example (cont.)

stack

AZ1

A0

CMSC330 Summer 2025

18

Reference Counting Example (cont.)

stack

AZ1

CMSC330 Summer 2025

19

Reference Counting Example (cont.)

stack

AZ10

CMSC330 Summer 2025

20

Reference Counting Example (cont.)

stack

CMSC330 Summer 2025

21

Reference Counting Tradeoffs

» Advantage

* Incremental technique

» Generally small, constant amount of work per memory write
» With more effort, can even bound running time

» Disadvantages
e Cascading decrements can be expensive
* Requires extra storage for reference counts
* Need other means to collect cycles, for which counts never go to

0) B - T

1
If this link is deleted, all reference counts are = 1, but no way to
access ring structure.

CMSC330 Summer 2025 23

Tracing Garbage Collection

» |dea: Determine reachability as needed, rather than by
stored counts, incrementally

» Every so often, stop the world and

* Follow pointers from live objects (starting at roots) to expand the
live object set
» Repeat until no more reachable objects

* Deallocate any non-reachable objects

» Two main variants of tracing GC
* Mark/sweep (McCarthy 1960) and stop-and-copy (Cheney 1970)

CMSC330 Summer 2025 24

Mark and Sweep GC

» Two phases
* Mark phase: trace the heap and mark all reachable objects

* Sweep phase: go through the entire heap and reclaim all
unmarked objects

CMSC330 Summer 2025

25

Mark and Sweep Example

stack

\

CMSC330 Summer 2025

26

Mark and Sweep Example (cont.)

stack

CMSC330 Summer 2025

27

Mark and Sweep Example (cont.)

stack

CMSC330 Summer 2025

28

Mark and Sweep Example (cont.)

stack

CMSC330 Summer 2025

29

Mark and Sweep Example (cont.)

stack

— /\/

—_— / —

CMSC330 Summer 2025

Mark and Sweep Example (cont.)

stack

— /\/

— / —

CMSC330 Summer 2025

Mark and Sweep Example (cont.)

stack
. ~

CMSC330 Summer 2025

Mark and Sweep Example 2

root———»o A F
S~]free

After Mark

root ——i4 A =

CMSC330 Summer 2025

]free

Mark and Sweep Example 2

After Mark

root——i44 A |9 B |4 € |9 D |4 E g F

After Sweep

root——ig A |g B g € o P |g E |o F

CMSC330 Summer 2025 Free list: F->B->D 35

Mark and Sweep Advantages

» No problem with cycles

» Non-moving
* Live objects stay where they are

* Makes conservative GC possible
» Used when identification of pointer vs. non-pointer uncertain
» More later

CMSC330 Summer 2025

36

Mark and Sweep Disadvantages

» Fragmentation

* Available space broken up into many small pieces

» Thus many mark-and-sweep systems may also have a compaction phase
(like defragmenting your disk)

» Cost proportional to heap size

e Sweep phase needs to traverse whole heap — it touches dead
memory to put it back on to the free list

CMSC330 Summer 2025

37

Copying GC

» Like mark and sweep, but only touches live objects
* Divide heap into two equal parts (semispaces)
* Only one semispace active at a time

At GC time, flip semispaces
1. Trace the live data starting from the roots
2. Copy live data into other semispace
3. Declare everything in current semispace dead
4. Switch to other semispace

CMSC330 Summer 2025

38

Copying GC Example

stack

39

CMSC330 Summer 2025

Copying GC Example (cont.)

40

~

CMSC330 Summer 2025

Copying GC Example (cont.)

41

CMSC330 Summer 2025

Copying GC Example (cont.)

42

CMSC330 Summer 2025

Copying GC Example 2

New space

root — A B | C D | E F

CMSC330 Summer 2025

43

Copying GC Example 2

root — A B |C DIE

F new space

new space

CMSC330 Summer 2025

44

Copying GC Tradeoffs

» Advantages
* Only touches live data

* No fragmentation (automatically compacts)
> Will probably increase locality

» Disadvantages
* Requires twice the memory space

CMSC330 Summer 2025

45

Quiz 1

Which garbage collection implementation requires more
storage”?

A.Mark and Sweep
B.Copying GC

CMSC330 Summer 2025

46

Quiz 1

Which garbage collection implementation requires more
storage”?

A.Mark and Sweep
B.Copying GC

CMSC330 Summer 2025

47

Quiz 2

Which compacts the heap to prevent fragmentation?

A. Mark and Sweep
B. Reference Counting
C. Copying GC

CMSC330 Summer 2025

48

Quiz 2

Which compacts the heap to prevent fragmentation?

A. Mark and Sweep
B. Reference Counting
C. Copying GC

CMSC330 Summer 2025

49

Quiz 3

The computational cost of Copying GC is proportional to the
heap size

A.True
B.False

CMSC330 Summer 2025 50

Quiz 3

The computational cost of Copying GC is proportional to the
heap size

A.True
B.False

CMSC330 Summer 2025 51

Quiz 4

Which of the following happens most frequently?

A.Reference Count Updating
B.Mark and Sweep checking for dead memory
C.Copying GC copying live data

CMSC330 Summer 2025

52

Quiz 4

Which of the following happens most frequently?

A.Reference Count Updating
B.Mark and Sweep checking for dead memory
C.Copying GC copying live data

CMSC330 Summer 2025

53

Conservative Garbage Collection (for C)

» For C, we can’t be sure which words are pointers
* Due to incomplete type information, the use of unsafe casts, etc.
» |dea: suppose it is a pointer if it looks like one

* Most pointers are within a certain address range, they are word
aligned, etc.

* May retain dead memory (floating point # looks like a pointer)
» Different styles of conservative collector

* Mark-sweep: important that objects not moved

* Mostly-copying: can move objects you are sure of

CMSC330 Summer 2025 54

Stop the World: Potentially Long Pause

» Both of the previous algorithms “stop the world” by
prohibiting program execution during GC

* Ensures that previously processed memory is not changed or
accessed, creating inconsistency

* But the execution pause could be too long

» How can we reduce the pause time of GC? Ideas:
* Incremental: Collect a little at a time
e Parallel: Do GC in multiple threads at once
e Concurrent: Do GC while main program is running

CMSC330 Summer 2025

55

The Generational Principle

Minor collections Major collections

B 4 I ! i IIII

y - oS
(L 3 5 objects
Q) E L L
2 die quickly;
~
a old objects
S keep living”
. u
S
N v
S i
2 Vv

i

n

£

Bytes allocated

Object lifetime increases =

CMSC330 Summer 2025 56

Generational Collection

» Long lived objects visited multiple times

* |dea: Have more than one heap region, divide into generations
» Older generations collected less often
» Objects that survive many collections get promoted into older generations

> Need to track pointers from old to young generations to use as roots for
young generation collection

- Tracking one in the remembered set

» One popular setup: Generational, copying GC

CMSC330 Summer 2025 57

What Does GC Mean to You?

» |deally, nothing

* GC should make programming easier
e GC should not affect performance (much)

» Usually bad idea to manage memory yourself

* Using object pools, free lists, object recycling, etc...

* GC implementations have been heavily tuned
» May be more efficient than explicit deallocation

» If GC becomes a problem, hard to solve
* You can set parameters of the GC
* You can modify your program

CMSC330 Summer 2025

58

Increasing Memory Performance

» Don’t allocate as much memory
* Less work for your application
* Less work for the garbage collector
» Don’t hold on to references
* Null out pointers in data structures

* Example
Object a = new Object;
...usea...
a = null; /l when a is no longer needed

CMSC330 Summer 2025

59

Find the Memory Leak

class Stack {

private Object[] stack;

private int index;

public Stack(int size) {
stack = new Object[size];

}

public void push(Object o) {
stack[index++] = o;

}

public void pop () {

return stack|[index--];

}
}

From Haggar, Garbage Collection and the Java Platform Memory Model

CMSC330 Summer 2025

60

Find the Memory Leak

class Stack {

private Object[] stack;

private int index;

public Stack(int size) {
stack = new Object[size];

}

public void push(Object o) {
stack[index++] = o;

}

public void pop () {
stack[index] = null; // null out ptr
return stack[index--];

}
}

From Haggar, Garbage Collection and the Java Platform Memory Model

Answer: pop() leaves item on stack array; storage not reclaimed

CMSC330 Summer 2025

61

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Memory Attributes
	Slide 3: Memory Management in C
	Slide 4: Memory Management in C
	Slide 5: Memory Management in C
	Slide 6: Memory Management in Ruby, Java, OCaml
	Slide 7: Manual vs. Automatic Recovery
	Slide 8: Automatic memory management
	Slide 9: Fragmentation
	Slide 10: Strategy
	Slide 11: Determining Liveness
	Slide 12: Liveness by Reachability
	Slide 13: Roots
	Slide 14: Reference Counting
	Slide 15: Reference Counting Example
	Slide 16: Reference Counting Example (cont.)
	Slide 17: Reference Counting Example (cont.)
	Slide 18: Reference Counting Example (cont.)
	Slide 19: Reference Counting Example (cont.)
	Slide 20: Reference Counting Example (cont.)
	Slide 21: Reference Counting Example (cont.)
	Slide 23: Reference Counting Tradeoffs
	Slide 24: Tracing Garbage Collection
	Slide 25: Mark and Sweep GC
	Slide 26: Mark and Sweep Example
	Slide 27: Mark and Sweep Example (cont.)
	Slide 28: Mark and Sweep Example (cont.)
	Slide 29: Mark and Sweep Example (cont.)
	Slide 30: Mark and Sweep Example (cont.)
	Slide 31: Mark and Sweep Example (cont.)
	Slide 32: Mark and Sweep Example (cont.)
	Slide 34: Mark and Sweep Example 2
	Slide 35: Mark and Sweep Example 2
	Slide 36: Mark and Sweep Advantages
	Slide 37: Mark and Sweep Disadvantages
	Slide 38: Copying GC
	Slide 39: Copying GC Example
	Slide 40: Copying GC Example (cont.)
	Slide 41: Copying GC Example (cont.)
	Slide 42: Copying GC Example (cont.)
	Slide 43: Copying GC Example 2
	Slide 44: Copying GC Example 2
	Slide 45: Copying GC Tradeoffs
	Slide 46: Quiz 1
	Slide 47: Quiz 1
	Slide 48: Quiz 2
	Slide 49: Quiz 2
	Slide 50: Quiz 3
	Slide 51: Quiz 3
	Slide 52: Quiz 4
	Slide 53: Quiz 4
	Slide 54: Conservative Garbage Collection (for C)
	Slide 55: Stop the World: Potentially Long Pause
	Slide 56: The Generational Principle
	Slide 57: Generational Collection
	Slide 58: What Does GC Mean to You?
	Slide 59: Increasing Memory Performance
	Slide 60: Find the Memory Leak
	Slide 61: Find the Memory Leak

