UC

"Should Work on Wireless Networks?"

ACM S³ Workshop August 26, 2012 Istanbul, Turkey

Kyle Jamieson Department of Computer Science University College London

<u><u></u>UCL</u>

What this talk is not

- Not a concrete list of open research questions

 See Craig Partridge's paper in ACM SIGCOMM Computer Communications Review
- Not advice aimed specifically at more experienced graduate students
- Mostly not indisputable facts
- Not "should someone work on wireless?"

≜UCL

Today

"As a student, should I work on wireless networks?"

It depends.

- What makes wireless hard and exciting?
- What constitutes a good research question in wireless networks?
 - Heuristics for choosing good research ideas
- · What defines success in wireless networks?

[±]UCL

Some things are well understood...

Q: What's the capacity of a point-to-point link?

• Before Shannon: The only way to make P(error) arbitrarily small is to reduce the rate of communication.

• Shannon: No! Up to some rate C, coding <u>can</u> make P(error) arbitrary small!

<u>+UCL</u>
How successive IC (SIC) works
$\text{Received} = \text{Noise} + \sum \text{Distorted Signals}$
$\bigcirc 110 \rightarrow \text{NIC} \rightarrow \bigcirc \overrightarrow{\text{Air}}$
Approximate model Model error
$\bigwedge - \bigwedge = \bigwedge + \checkmark$
[Slide adapted from: Dan Halperin]

Today

"As a student, should I work on wireless networks?"

It depends.

- ✓ What makes wireless hard and exciting?
- What constitutes a good research question in wireless networks?
- What defines success in wireless networks?

≜UCL

What makes a good wireless research problem?

- Worth the attention of multiple people
 e.g., spatial multiplexing
- 2. Opens up substantial follow-on effortsIndustry, research, or both

3. Likely will have impact

- Impact may come long after the idea

[±]UCL

UCL

Choosing a good wireless research problem

How can I choose a good wireless research problem?

Here are some heuristics.

Heuristic #1: Solve it better

Vision-based approaches

Given a solved problem, ask yourself:

Can I take a fresh look at solving this problem?

Is there anything about the way the researchers solve this problem that I perhaps think can be improved, or even outright disagree with?

UCL UCL Indoor location systems today Two observations about WiFi access points 1. Ever-increasing number of antennas for MIMO, SDMA Map-based approaches: RADAR [Bahl+oo] - Require calibration to build signal strength map Augmented with probabilistic models: Horus [Youssef+05] (60 cm accuracy) (\cdot) Crowdsourcing: EZ [Chintalapudi+10], Zee [Rai+12] 2. High WiFi access point density: usually many nearby Radio modeling-based approaches RF propagation model relates signal strength and distance No calibration needed, but accuracy suffers 3 m accuracy [Lim*o6], 5.4 m accuracy [Gwon*o4] • UCL Department of CS 15 · Client at a random 10 Count location sends a packet 5 · How many APs overhear Highly accurate (≈ 20 cm) [Hile*08] but computationally intensive Light conditions aren't always ideal, humans are humans it? 8 10 12 4 6 Number of APs overheard

UCL ArrayTrack: Use AoA for indoor localization · Client sends a single packet over the air • Each access point (AP) computes the **physical angles**of-arrival of a client's transmission: a pseudospectrum Aggregate pseudospectra at backend server for location Backend server 6

What new research questions does new hardware X allow me to investigate?

Heuristic #3: Take the next step Given a solved problem, ask yourself: What's the next step in realizing the solution, and are there any interesting challenges in doing so?

≜UCL

Heuristic #4: Solve a new problem

Ask yourself:

Is there a part of the current paradigm that can be discarded and replaced with something better?

- 1. Prescience
- Normal science ("puzzle-solving")
 Anomalous results lead to "crisis" and "revolution"

≜UCL

UCL

≜UCL

Today

"As a student, should I work on wireless networks?"

It depends.

- ✓ What makes wireless hard and exciting?
- ✓ What constitutes a good research question in wireless networks?
- What defines success in wireless networks?

Capacity, capacity, capacity

- But careful, it can be measured in many different ways Network or point-to-point?
- At many different layers: PHY, link layer, routingTrace-driven or live?
- Line rate? If not, interaction with the wireless channel?

UCL

Localization

- Interesting problem, not "one size fits all"
- RADAR, infrastructure-dependent approaches
- Moving target: Shift to crowdsourcing and infrastructure-free approaches
- Basic metrics
 - Localization accuracy
 - Latency

In summary

"As a student, should I work on wireless networks?"

It depends.

- ✓ What makes wireless hard and exciting?
- What constitutes a good research question in wireless networks?
- ✓ What defines success in wireless networks?

The take-away

Great, you've decided to go into wireless networks!

TODO:

- 1. Solve it better
- 2. Hack on new hardware
- 3. Take the next step
- 4. Solve a new problem