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“Should I Work on Wireless Networks?” 

A brief disclaimer (and quasi-introduction) 

What this talk is not 

•  Not	  a	  concrete	  list	  of	  open	  research	  questions	  
–  See	  Craig	  Partridge’s	  paper	  in	  ACM	  SIGCOMM	  
Computer	  Communications	  Review	  

•  Not	  advice	  aimed	  specifically	  at	  more	  experienced	  
graduate	  students	  

•  Mostly	  not	  indisputable	  facts	  

•  Not	  “should	  someone	  work	  on	  wireless?”	  

© 2008 The New Yorker Collection from cartoonbank.com.  All Rights Reserved. 

Today 

“As	  a	  student,	  should	  I	  work	  on	  wireless	  networks?”	  
	  
It	  depends.	  
	  
•  What	  makes	  wireless	  hard	  and	  exciting?	  
•  What	  constitutes	  a	  good	  research	  question	  in	  
wireless	  networks?	  
–  Heuristics	  for	  choosing	  good	  research	  ideas	  

•  What	  defines	  success	  in	  wireless	  networks?	  

Some things are well understood… 

Q:	  What’s	  the	  capacity	  of	  a	  
point-‐to-‐point	  link?	  
	  
•  Before	  Shannon:	  
The	  only	  way	  to	  make	  P(error)	  
arbitrarily	  small	  is	  to	  reduce	  
the	  rate	  of	  communication.	  
	  
•  Shannon:	  
No!	  	  Up	  to	  some	  rate	  C,	  
coding	  can	  make	  P(error)	  
arbitrary	  small!	  
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Some things are well understood… 

•  AWGN	  channel	  capacity:	  

•  Continuous-‐time	  (we	  
didn’t	  derive	  this	  one):	  
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…others aren’t understood well at all! 

Q:	  What’s	  the	  capacity	  of	  a	  wireless	  network?	  
	  

A:	  (information	  theory)	  …	  
A:	  (CS	  community)	  let’s	  build	  a	  better	  medium	  access	  protocol!	  

ALOHA packet radio analysis takes a 
single-cell perspective 

λ 

Pr(success) 

1/e ≈ 37% 

Time

Node 3

Node 2

Node 1

Pr success( ) = λ 1− λ
N

"

#
$

%

&
'
N−1



8/26/12 

3 

Contrast: Ethernet 

•  Bob	  Metcalfe,	  PhD	  student	  at	  Harvard	  in	  early	  1970s	  
–  Working	  on	  protocols	  for	  the	  ARPAnet	  

•  Xerox	  Palo	  Alto	  Research	  
	  	  	  	  Center	  (PARC),	  1973	  

–  Network	  the	  Alto	  Workstation	  
	  [Lampson	  et	  al.]	  

–  ALOHA	  packet	  radio	  

A B C Z 

Propagation delay: τ seconds 

Wireless network system structure 

•  Optimization	  across	  layers	  
•  Optimization	  across	  the	  network,	  at	  each	  layer	  

Application 
Transport 
Network 

Link 
Physical 

Network 
Link 

Physical 

Application 
Transport 
Network 

Link 
Physical 

Host A Host B Router 

The growing wireless toolbox 

Link	  Layer	  and	  above	  
•  MAC	  protocols	  
•  Routing	  and	  handoff	  

Physical	  Layer	  
•  Successive	  Interference	  Cancellation	  
•  Transmit	  beamforming	  
•  Receive	  beamforming	  
•  MIMO	  spatial	  multiplexing	  
•  Space-‐time	  coding	  
•  Amplify-‐and-‐forward	  

Carrier sense doesn’t avoid collisions 

AP 

Measure	  goodput	  during	  TCP	  file	  transfer	  [Sheth	  ’06]	  

Defined	  	  
100%	  

AP 

Two	  clients	  

97%	  

Single	  client	  

AP 

Two	  hidden	  
terminals	  

62%!	  

[Slide adapted from: Dan Halperin] 

Carrier sense prevents spatial reuse 

AP Two	  hidden	  
terminals	  

62%	  

AP 

AP 

Two	  exposed	  
terminals	  

at	  most	  100%	  

[Slide adapted from: Dan Halperin] 

The SINR model 

•  When	  relative	  power	  of	  
desired	  signal	  is	  large	  
enough,	  signal	  received	  

•  Line	  shows	  threshold	  
between	  reliable	  and	  
lossy	  links	  (>	  15%	  FER)	  

•  Generally	  receivers	  
require	  at	  least	  3	  dB	  
SINR	  
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How successive IC (SIC) works 

-‐	   =	   +	  

NIC	  0110	 Air	  

Approximate model Model error 

[Slide adapted from: Dan Halperin] 
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[Slide adapted from: Dan Halperin] 

Today 

“As	  a	  student,	  should	  I	  work	  on	  wireless	  networks?”	  
	  
It	  depends.	  
	  
ü What	  makes	  wireless	  hard	  and	  exciting?	  
•  What	  constitutes	  a	  good	  research	  question	  in	  
wireless	  networks?	  

•  What	  defines	  success	  in	  wireless	  networks?	  

What makes a good wireless research problem? 
[Partly adopted from Partridge] 
 
1.  Worth	  the	  attention	  of	  multiple	  people	  

–  e.g.,	  spatial	  multiplexing	  

2.  Opens	  up	  substantial	  follow-‐on	  efforts	  
–  Industry,	  research,	  or	  both	  

3.  Likely	  will	  have	  impact	  
–  Impact	  may	  come	  long	  after	  the	  idea	  

Choosing a good wireless research problem  

How	  can	  I	  choose	  a	  good	  wireless	  research	  problem?	  

Here	  are	  some	  heuristics.	  
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Heuristic #1: Solve it better 

Given	  a	  solved	  problem,	  ask	  yourself:	  
	  
Can	  I	  take	  a	  fresh	  look	  at	  solving	  this	  problem?	  
	  
Is	  there	  anything	  about	  the	  way	  the	  researchers	  solve	  
this	  problem	  that	  I	  perhaps	  think	  can	  be	  improved,	  or	  
even	  outright	  disagree	  with?	  

Embrace collisions in RF backscatter networks 

and rateless nature of the code to enable fast identification and dis-
tributed rate adaptation, as described below.

Node Identification: We would like to identify the K nodes that
want to transmit in a network of N nodes, where K ! N (e.g.,
20 items in a customer’s shopping cart among one million items
in a Wal-Mart store). We can model the scenario as an N-element
sparse binary vector x that is zero everywhere except inK locations.
Let all K nodes that have data transmit concurrently, where a node
i transmits a known binary pattern Ai. The signal received by the
reader, y, can be represented as:

y = [A1 . . .Ai . . .AN ]x

= Ax
(1)

Eq. 1 is a standard compressive sensing problem, where one wants
to retrieve a sparse vector x using linear combinations y = Ax.
Thus, we can use a compressive sensing solution to efficiently re-
cover x with a small number of linear combinations.
However, traditional compressive sensing algorithms are com-

putationally infeasible to apply in this setting because A has as
many columns as the number of nodes in the network (e.g., one
million items in a Wal-Mart store). To develop a practical solution,
we exploit the sparsity in x to eliminate large chunks of columns
in A. In particular, we hash the elements of x into buckets. All ids
that hash to empty buckets can be eliminated while ids that hash
to non-empty buckets can be disambiguated using a much smaller
scale compressive sensing solution. In §5, we incorporate the effect
of the wireless channel and extend this idea to form a full-fledged
identification protocol for backscatter networks.

Distributed Bit Rate Adaption: In contrast to traditional rate
adaptation, which focuses on point-to-point communication, Buzz
looks at the network as a whole and adapts the aggregate bit rate of
all backscatter nodes to channel conditions. Fig. 1(a) shows the ex-
isting system where backscatter nodes transmit sequentially. In this
design, each node’s share of the medium is the same. A node with
a good channel probably does not need the amount of share it gets,
while another node with a bad channel would not be able to de-
liver its data within its share. In contrast, backscatter nodes in Buzz
randomly collide in different time slots and keep doing so until the
reader signals that it has correctly received their data, as shown in
Fig. 1(b). These collisions act as a rateless code across nodes in
the network and allow us to implicitly redistribute the mismatched
network resources.
However, decoding these collisions to recover the transmitted

bits is an expensive joint optimization problem [51]. To address
this issue, in Buzz each node contributes to only a small random
subset of the collisions so that the resulting code is sparse, i.e., has
a low density. Similar to LDPC codes, such low density codes can
be decoded using a linear time decoder based on belief propaga-
tion. However, in contrast to LDPC codes, which are centralized
block codes, Buzz’s code is both distributed (i.e., it operates across
the bits of many nodes) and rateless (i.e., the reader collects colli-
sions until it has enough to decode). Using these properties, Buzz
provides automatic bit rate adaptation to backscatter networks.

Summary of Results: We built a prototype of Buzz and evalu-
ated it in a testbed of 16 computational UHF RFIDs and a USRP
backscatter reader. We compared Buzz with TDMA and CDMA
based schemes in a wide range of channel conditions, which leads
to the following findings:

• Averaged across experiments with different numbers of con-
current tags and over 600 traces in different channel condi-
tions, Buzz improved the overall communication efficiency of
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Figure 1—(a) Current systems try to avoid collisions by having
nodes sequentially transmit. (b) In Buzz a random subset of nodes
collide in each time slot, forming a distributed rateless code.

backscatter networks by 3.5×. This gain is the combination of
two factors: First, Buzz reduced the time spent in the identifica-
tion phase by 5.5×, compared to the Framed Slotted Aloha pro-
tocol used in the EPC Gen-2 standard; Second, during the data
transmission phase, Buzz’s bit rate adaptation on average deliv-
ered a throughput gain of 2× over TDMA and CDMA.

• Buzz enables backscatter networks to work in far more challeng-
ing channel conditions than previously possible. In challenging
conditions, TDMA and CDMA systems experienced a message
loss rate as high as 50% and 100% respectively whereas Buzz’s
loss rate was zero due to its rateless code.

Contributions: This paper makes the following contributions:

• It introduces the concept of using randomized collisions as a dis-
tributed code across the bits of multiple transmitters.

• It presents a new low-complexity compressive sensing algorithm
that enables fast backscatter node identification.

• It presents the first automatic rate adaptation protocol that adapts
the collective bit rate of multiple transmitters, which do not indi-
vidually change their transmission bit rate.

• It demonstrates a working system that provides a severalfold im-
provement to the efficiency and reliability of backscatter net-
works.

2. BACKSCATTER COMMUNICATION

In backscatter networks, the reader transmits a high power con-
tinuous waveform. Backscatter nodes transmit their signal by re-
flecting back the continuous waveform using ON-OFF keying. The
nodes transmit a “1” bit by changing the impedance on their anten-
nas to reflect the reader’s signal and a “0” bit by remaining in their
initial silent state [16].
There are four main distinctions between backscatter networks

and the more familiar WiFi networks.

• There is no carrier frequency offset∆fc between different nodes’
transmissions since nodes do not generate their own RF signal
but rather reflect the reader’s signal [16].

• Backscatter nodes transmit and receive in a narrow bandwidth
due to their power limitation [14]. As a result, the multipath ef-
fect of wireless communication is negligible and the system can
be modeled as a single tap channel (one complex number) [46].

• Nodes are naturally synchronized by the reader’s query and small
synchronization errors do not matter since they transmit at very
low bit rates (tens to hundreds of kbps) [14]. In §8.1, we present
measurement results for commercial passive RFID tags and com-
putational RFID tags.

62

•  “Efficient and reliable low-power backscatter networks,” Wang et al., 
SIGCOMM 2012 

•  Map-‐based	  approaches:	  RADAR	  [Bahl+00]	  
–  Require	  calibration	  to	  build	  signal	  strength	  map	  
–  Augmented	  with	  probabilistic	  models:	  
	  	  	  	  Horus	  [Youssef+05]	  (60	  cm	  accuracy)	  
–  Crowdsourcing:	  EZ	  [Chintalapudi+10],	  Zee	  [Rai+12]	  	  

•  Radio	  modeling-‐based	  approaches	  
–  RF	  propagation	  model	  relates	  signal	  strength	  and	  distance	  
–  No	  calibration	  needed,	  but	  accuracy	  suffers	  
–  3	  m	  accuracy	  [Lim+06],	  5.4	  m	  accuracy	  [Gwon+04]	  

•  Vision-‐based	  approaches	  
–  Highly	  accurate	  (≈	  20	  cm)	  [Hile+08]	  but	  computationally	  intensive	  
–  Light	  conditions	  aren’t	  always	  ideal,	  humans	  are	  humans	  

Indoor location systems today 
1.  Ever-‐increasing	  number	  of	  antennas	  for	  MIMO,	  SDMA	  

2.  High	  WiFi	  access	  point	  density:	  usually	  many	  nearby	  
	  

Two observations about WiFi access points 
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•  UCL	  Department	  of	  CS	  
•  Client	  at	  a	  random	  
location	  sends	  a	  packet	  

•  How	  many	  APs	  overhear	  
it?	  

ArrayTrack: Use AoA for indoor localization 

•  Client	  sends	  a	  single	  packet	  over	  the	  air	  
•  Each	  access	  point	  (AP)	  computes	  the	  physical	  angles-‐

of-‐arrival	  of	  a	  client’s	  transmission:	  a	  pseudospectrum	  
•  Aggregate	  pseudospectra	  at	  backend	  server	  for	  location	  
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MUSIC: Geometric interpretation (Three 
antennas, two signals) 
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Signal e-vector e2

Noise
e-vector e3

Signal subspace

a(θ) continuum

[Adapted from Schmidt, “Multiple Emitter Location and Signal Parameter Estimation”] 

•  MUSIC	  algorithm	  
[Schmidt	  ‘79]	  and	  
variants	  [Shan	  ‘85]	  
analyze	  the	  
eigenstructure	  of	  Rxx	  
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P(θ) 

•  Multipath	  is	  a	  challenge	  in	  two	  distinct	  ways:	  

1.  MUSIC	  takes	  time-‐averages,	  gets	  confused	  when	  
signals	  are	  coherent	  

Challenge: Multipath propagation 

Receiver 
(AP) 

Transmitter 
(Client) 

Solution (1): Spatial smoothing 

•  Well-‐known	  technique	  [Shan+85]	  to	  average	  across	  
spatially	  diverse	  groups	  of	  antennas:	  

	  
	  
•  Tradeoff:	  Fewer	  effective	  number	  of	  antennas	  
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Current work: A 16-antenna AP prototype 

•  Three	  independent	  
reasons	  to	  increase	  the	  
number	  of	  antennas	  at	  
an	  AP	  in	  the	  future:	  
1.  Antenna	  diversity	  
2.  MIMO	  on	  a	  single	  link	  
3.  SDMA	  to	  multiple	  clients	  

•  Leverage	  more	  antennas	  
and	  more	  spatial	  
smoothing	  	  	  

•  Multipath	  is	  a	  challenge	  in	  two	  distinct	  ways:	  

1.  MUSIC	  takes	  time-‐averages,	  gets	  confused	  when	  
signals	  are	  coherent	  

	  
2.  Obstacles	  may	  block	  the	  direct	  line	  of	  sight	  

Challenge: Multipath propagation 
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Combining bearing likelihoods for a location 
likelihood at the backend server 
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•  Given	  N	  AP	  bearing	  likelihoods	  
P1(θ1(x)),	  P2(θ2(x)),	  …,	  PN(θN(x))	  

1.   Compute	  location	  likelihood	  
P(x)	  for	  a	  given	  location	  x:	  

	  
	  
2.   Search	  for	  most	  likely	  location	  

with	  sampling	  and	  hill	  
climbing	  

P1(θ) 

P2(θ) 

P x( ) = Pl θl x( )( )
l=1

N

∏

= logPl θl x( )( )
l=1

N

∑

Sampling and gradient search 

Additional APs usually improve location estimates 

Mobile’s 
true 

location 

Location heat map cycling through three to six APs  

Pop Quiz: Why could adding an AP make things 
worse, not better? 

One AP Two APs Three APs

Four APs Five APs Six APs

Figure 6: Heat maps showing the location likelihood of client A in Figure 4 with di↵ering numbers
of APs computing its location. We denote the ground truth location of client A in each heat map
with a small dot.

5. RELATED WORK
The most widely used RF-based approach for loca-

tion uses average received signal strength (RSS) from
packets, usually measured in units of whole decibels.
While readily available from commodity WiFi hardware
at this granularity, the resulting RSS measurements are
very coarse compared to the physical-layer information
we use in ArrayTrack, and so incur an amount of quan-
tization error, especially when few readings are present.

There are two main lines of work using RSS; the first,
pioneered by RADAR [3, 4] builds “maps” of signal
strength to one or more access points, achieving an
accuracy on the order of meters [18, 22]. Later sys-
tems such as Horus [32] use probabilistic techniques to
improve localization accuracy to an average of 60 cen-
timeters when an average of six access points are within
range of every location in the wireless LAN converge
area, but require large amounts of manual calibration.
While some work has attempted to reduce the calibra-
tion overhead [9], mapping generally requires significant
calibration e↵ort. Other map-based work has proposed
using overheard GSM signals from nearby towers [25],
or dense deployments of desktop clients [2]. In contrast
to map-based techniques, the experimental results we
show here achieve better location accuracy from very
small numbers of detected packets, with no calibration
steps required.

The second line of work using RSS are techniques
based on mathematical models. Some of these propos-
als use RF propagation models [17] to predict distance
away from an access point based on signal strength
readings. By triangulating and extrapolating using sig-
nal strength models, TIX [8] achieves an accuracy of
5.4 meters indoors. Lim et al. [12] use a singular value
decomposition method combined with RF propagation

models to create a signal strength map (overlapping
with map-based approaches). They achieve a localiza-
tion error of about three meters indoors. EZ [5] is a
system that uses sporadic GPS fixes on mobiles to boot-
strap the localization of many clients indoors. EZ solves
these constraints using a genetic algorithm, resulting
in a median localization error of two meters indoors,
without the need for any explicit pre-deployment cali-
bration.

AoA-based approaches. Niculescu and Nath [15]
use a mechanically-rotated directional antenna to trian-
gulate clients’ locations from packet-level RSS readings
as base stations rotate their antennas. Their system
achieves a 2.1 m median error with seven participating
base stations. However, it requires an additional rotat-
ing antenna to be added to the base station, and needs
to overhear hundreds of packets from each client in or-
der to get enough RSS data to achieve that accuracy.

Wong et al. [28] investigate the use of AoA and
channel impulse response measurements for localiza-
tion. While they have demonstrated positive results
at a very high SNR (60 dB), typical wireless LANs op-
erate at significantly lower SNRs, and the authors stop
short of describing a complete system design of how the
ideas would integrate with a functioning wireless LAN
as ArrayTrack does. Niculescu et al. [14] simulate AoA-
based localization in an ad hoc mesh network. AoA has
also been proposed in CDMA mobile cellular systems
[31], in particular as a hybrid approach between TDoA
and AoA [6, 29], and also in concert with interference
cancellation and ToA [24].

Image processing based approaches. These ap-
proaches match features extracted from images from a
mobile’s camera to localize a device. Examples include
work by Hile et al. [10] and vSLAM [11]. The ap-

5

Mobile’s true location 

✗ Worse 
estimate! 

ArrayTrack achieves high localization accuracy 

•  33	  clients	  on	  one	  floor	  of	  an	  
office	  space	  in	  active	  use	  

•  Ground	  truth	  using	  
architectural	  drawings	  and	  
laser	  measure	  

•  Compare	  with	  optimal	  AP	  
subset	  of	  any	  size:	  
ArrayTrack	  is	  within	  2×	  
–  Reasons	  to	  expect	  even	  

further	  improvement	   1 5 10 20 40 100 400 2500
0

0.2

0.4
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CD
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ArrayTrack
Optimal subset of APs
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5 APs
4 APs
3 APs

[ACM HotMobile 2012] 

Heuristic #2: Hack on new hardware 

Ask	  yourself:	  
	  
What	  new	  research	  questions	  does	  new	  hardware	  X	  
allow	  me	  to	  investigate?	  
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Software-defined radio opens up the network 
to innovation 

More on-board processing  è 
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SoftPHY: Change perspective from packets 
to symbols 

Physical layer 

SoftPHY interface 

Packet: 

Confidence 

•  Cross-layer information flow from PHY up 
•  Extract use from high-confidence parts of packets 

Link layer 
Network layer 

•  Maintain layered architecture 
(PHY-independent use) 

3rd pkt., 1st tx. 

Data bits 

1st pkt., 1st tx. 

Checksum (32-bit) 

“Good” data bits 
“Bad” data bits 

1st pkt., 3rd tx. 

2nd pkt., 1st tx. 
1st pkt., 2nd tx. 

Partial Packet-ARQ 
“Partial Packet Recovery,” Jamieson and Balakrishnan, SIGCOMM ‘07 

Fidelity Comtech Phocus array access point 

•  ca.	  2008	  
•  Commodity	  Atheros	  802.11a/g	  card	  
•  Eight-‐element	  phased-‐array	  RF	  front	  end	  

•  “DIRC:	  Increasing	  Indoor	  Wireless	  Capacity	  Using	  
Directional	  Antennas,”	  Liu	  et	  al.,	  SIGCOMM	  2009.	  

S1

S2

R1

R2

(a) Using max SNR/LOS direc-
tions

S1

S2

R1

R2

(b) Exploiting reflected paths

(S1,R1,   ) (S1,R1,   ) (S1,R1,   ) (S1,R1,   )

(S2,R2,   ) (S2,R2,   ) (S2,R2,   ) (S2,R2,   )

(c) Conflict graph (partial)

Figure 1: Example of exploiting multiple paths using directional antennas and conflict graph

cal enterprise environment in which: 1) the access points
(APs) are centrally controlled and managed, 2) the APs
are equipped with phased array (software steerable, direc-
tional) antennas, and 3) the clients have standard 802.11
hardware. The core of our solution is an algorithm that
identifies close-to-optimal orientations for the directional an-
tennas, maximizing system-wide capacity while ensuring that
configuration overhead is low and scales linearly with the
number of APs. DIRC also incorporates a new TDMA-based
MAC protocol designed for indoor directional antennas. This
design is much more e�cient than CSMA/CA-based MAC
protocols, which assume that the interference at the sender
is similar to the interference at the receiver. This assumption
breaks down dramatically with directional antennas.

This paper makes the following contributions. We design
and implement DIRC, the first system that improves indoor
wireless capacity through the use of directional antennas.
DIRC’s centralized algorithm can achieve close-to-optimal
transmission scheduling and antenna orientations with very
low computational overhead, as demonstrated on a testbed
with 3 directional APs and 6 clients. We show that the
end-to-end DIRC implementation works well in practice. In
a testbed network, UDP performance improves by 65% over
prior approaches and 100% over using only omni-directional
antennas. Our experiments demonstrate that DIRC can
handle node mobility and dynamic tra�c patterns.

The rest of the paper is organized as follows. We first
elaborate on the challenges associated with the indoor use
of directional antennas in Section 2. We then present our
solution, DIRC, in Sections 3 and 4. Section 5 evaluates
DIRC in two real world deployments. In Section 6 we discuss
related work and conclude in Section 7.

2. CHALLENGES
In this section, we first present the RF technology back-
ground that is necessary to understand the challenges and
our proposed solutions. We then detail the two main chal-
lenges in using directional antennas to improve indoor RF
spatial reuse: 1) determining e↵ective antenna orientations
and 2) determining which directional nodes should trans-
mit concurrently. Note that these two challenges cannot
be addressed independently. For example, the choice of an-
tenna orientation may depend on the set of nodes that the
MAC protocol determines should transmit concurrently. We
consider such interactions below.

2.1 Background
The focus of our work is on the use of directional antennas to
increase spatial reuse. Unlike omni-directional antennas that

have a uniform gain in each direction, directional antennas
have a di↵erent antenna gain in each direction. As a result
the signal level at a receiver can be increased or decreased
simply by rotating the orientation of the directional antenna.
In the directional mode, the antennas we use have the ability
to increase or decrease the signal strength at a receiver
node by up to 20 dB. Received signal strength indoors can
be further a↵ected by the presence of strong RF reflectors
like metal cabinets, walls, and doors, resulting in multiple
reflected paths that add up constructively or destructively
at a receiver.

In addition to directionality, our design also relies on the
property of many Wi-Fi radios, called the capture e↵ect. If
a card supports capture, it can successfully receive a packet
transmission in the presence of concurrent transmissions, as
long as the desired transmission has a su�ciently higher
signal strength. The signal strength di↵erence required is
usually in the range of 20-25 dB for 54 Mbps. The majority
of this di↵erence, 10-20 dB, can be provided by appropriately
orienting the antennas. The rest of the di↵erence can be
achieved from the fact that many receivers are closer to their
senders than to the interferers. As a result, with careful con-
figuration of directional antennas, we can often ensure that
the intended receivers can “capture” their packets, despite
the presence of interfering transmissions.

2.2 Antenna Orientation
Simple Heuristics Do Not Work Well. Directional an-
tennas have primarily been used in outdoor deployments,
where the LOS orientation of the antenna towards the re-
ceiver provides both the best performance and the best signal
strength [19, 21]. Indoors, the LOS path may not exist be-
cause of obstructions between sender and receiver. As a
result, existing indoor directional deployments have tried
using the direction of maximum signal strength to determine
the antenna orientation. We call this approach the Max

SNR approach. However, this approach only works well in

isolation. If multiple directional senders exist in an indoor
space, and can potentially transmit simultaneously, then
orienting the senders according to the max SNR direction
will not necessarily lead to the maximum spatial reuse, or
system-wide capacity.

Figures 1(a) & (b) illustrate why the Max SNR approach
may not always maximize spatial reuse. Nodes S1 and S2 are
two directional senders that wish to transmit data to omni-
directional receivers R1 and R2 respectively. Given that there
are no obstructions between senders and receivers, the max
SNR direction is the same as the LOS direction (Figure 1(a)).
Unfortunately, the LOS/max SNR directions lead to high

Wireless Sensor Hints: The Opportunity 

•  “Improving	  Wireless	  Network	  
Performance	  Using	  Sensor	  Hints,”	  
Ravindranath	  et	  al.,	  NSDI	  2011.	  

•  Modern	  mobile	  devices	  have	  many	  
sensors	  

•  Used	  by	  applications	  
•  Ignored	  by	  protocols	  today	  

Accelerometer	  
Proximity	  Sensor	  Camera	  

Ambient	  Light	  	  
Sensor	   Microphone	  

GPS	  

WiFi	  

Wireless protocols can use 
hints from sensors to 
significantly improve 

performance	


Bluetooth	  

[Slide adapted from: Hari Balakrishnan] 

Sensor Movement Hints 

•  Has	  there	  been	  
movement?	  

•  Heading	  (direction)	  
•  Speed	  
•  Position	  

50-500 Hz	

3-axis force	


“Jerk” metric detects movement 
reliably within 10 ms	


[Slide adapted from: Hari Balakrishnan] 
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Architecture 

Communicate hints to neighbors	

Adapt to neighbor mobility, not just node’s own movement	


Radio 

[Slide: Hari Balakrishnan] 

Hint-Aware Protocols 

•  Bit	  Rate	  Adaptation	  
•  Topology	  Maintenance	  
•  Access	  Point	  Policies	  

–  Association	  
–  Packet	  scheduling	  
–  Pruning	  

•  Vehicular	  network	  route	  selection	  
•  And	  more…	  

[Slide: Hari Balakrishnan] 

Heuristic #3: Take the next step 

Given	  a	  solved	  problem,	  ask	  yourself:	  
	  
What’s	  the	  next	  step	  in	  realizing	  the	  solution,	  and	  are	  
there	  any	  interesting	  challenges	  in	  doing	  so?	  

Maranello: Practical Partial Packet Recovery 

correct bits at the end of packets that lack a good pream-
ble. PPR was implemented and evaluated on an 802.15.4
(ZigBee) protocol stack.

Driven by per-bit confidence from the PHY Layer,
SOFT [27] combines several received versions of a cor-
rupted frame to produce a correct frame. To repair pack-
ets sent to an AP, several APs share bit confidence over
a wired link. To repair packets sent to a client, the client
combines per-bit confidence from a corrupted transmis-
sion and one or more retransmissions.

Due to performance limitations of software radio plat-
forms, these protocols are evaluated only at low bit
rates. In contrast, Maranello is implemented using read-
ily available commercial 802.11 hardware, and thus it
can be immediately realized at speed and deployed.
We also show that Maranello provides increased perfor-
mance even with the encodings used for high bit rates.

2.4 Wireless Communication Diversity

Correcting errors with wireless diversity complements
Maranello’s packet repair. Diversity approaches attempt
to correct packets by observing different copies of the
same packet, either as received at different stations or
as received in (corrupt) retransmissions. When failure
happens, MRD [20] combines many received versions of
a given packet at different APs, which may have error
bits at different locations, to recreate the original packet.
If the original packet cannot be recovered through frame
combining, a retransmission protocol, called Request For
Acknowledgment (RFA), is proposed to retransmit the
whole packet. SPaC [4] exploits the spatial diversity
of multihop wireless sensor networks to combine sev-
eral corrupted receptions of a packet at its destination.
These corrupted receptions may be retransmitted by dif-
ferent neighboring nodes to repair the original transmis-
sion. PRO [16] is an opportunistic retransmission pro-
tocol for 802.11 wireless LANs that allows overhearing
relay nodes to retransmit on behalf of the source node
after they know that a transmission failed.

Other protocols can benefit from wireless communi-
cation diversity, but these are typically evaluated only
by theoretical analysis or simulation study. For exam-
ple, MRQ [24] keeps all the erroneous receptions of a
given packet and recovers the original packet by com-
bining these receptions. Like PRO, HARBINGER [28]
improves the performance of Hybrid ARQ, by exploiting
retransmitted packets from relays that overhear the com-
munication. The approach of Choi et al. [3] uses the error
correction bits transmitted in data packets to recover cor-
rupted blocks. It retrieves uncorrected blocks from later
retransmissions of the packets and combines them with
previous blocks to recover the original packets.

Correct Time

Correct:
Frame

SIFS
Ack

802.11 &
Maranello

Corrupt
Corrupt:

Corrupt frame
x x Ack Timeout

DIFS & Backoff Retransmission802.11

Corrupt
Corrupt:

Corrupt frame
x x

1 2 3 4 5
SIFS

Nack DIFS & Backoff Repair

3 5

Maranello

Figure 1: Maranello reacts to packet corruption by send-
ing a NACK when the sender awaits an ACK. The time
to repair should decrease relative to retransmission. (Di-
agram not to scale.)

3 Maranello Design
In this section, we present an overview of Maranello, de-
scribe how it achieves the key design goals of a practical
partial packet recovery scheme, and justify the choices
of block-based recovery and the Fletcher-32 checksum
computation. We analyze this design in isolation in the
following section (4) before presenting implementation
details (Section 5) and evaluating the implementation on
real hardware.

3.1 Overview
Figure 1 presents an overview of the Maranello proto-
col, compared to 802.11. When a Maranello-supporting
device receives a frame with errors, it divides the frame
into 64-byte blocks (the last block may be smaller) and
computes a separate checksum for each block. Then
it replies to the transmitter with a NACK that includes
these checksums. It saves the corrupted original packet
in a buffer, waiting for the sender to transmit correct
blocks. This negative acknowledgment is sent when
the transmitter expects to receive a positive acknowl-
edgment. A Maranello-supporting transmitter will then
match the receiver-supplied checksums to those of the
original transmission and send a repair packet with only
those blocks of the original transmission that were cor-
rupted. Once the repair packet is received correctly, the
receiver sends a normal 802.11 ACK.

Devices that do not support Maranello interoperate
easily. Unmodified senders will treat the negative ac-
knowledgment as garbage and retransmit as normal.
Unmodified receivers will fail to transmit a Maranello
NACK, and cause a Maranello sender to retransmit after
timeout.

At very low transmission rate, the NACK for a large
packet may be longer than other stations expect to defer
to the acknowledgment (i.e., it may extend beyond the

4

“Maranello: Practical Partial Packet Recovery for 802.11,” Han et al., NSDI ‘11 

Heuristic #4: Solve a new problem 

Ask	  yourself:	  
	  
Is	  there	  a	  part	  of	  the	  current	  paradigm	  that	  can	  be	  
discarded	  and	  replaced	  with	  something	  better?	  
	  
	  
	  
1.  Prescience	  
2.  Normal	  science	  (“puzzle-‐solving”)	  
3.  Anomalous	  results	  lead	  to	  “crisis”	  and	  “revolution”	  

Current approach: Modulation adaptation 

00 01 

11 10 

0 1 

0 1 
00 01 

11 10 

Metric: Signal-to-noise power ratio (SNR) 
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Current approach: Error control coding adaptation 

k message bits 

Channel encoder 

Modulation 

n channel bits 

Current approaches adapt a fixed code rate:  
 
Lower code rate ☞ more parity bits ☞ more redundancy 

Demodulation 

k message bits 

Channel decoder 

n channel bits 

R = k
n

Current approach: “Adapt and discard” 

Link layer 

packet (L bits) 

Physical layer 

•  Physical layer: Adapt for a low (~10−5) BER 
•  Adapt modulation (feedback loop) 
•  Adapt fixed coding rate (feedback loop) 

Network layer 

Frame checksum: discard errored frames 
•  Link layer: Request retransmissions 

The wireless channel is dynamic and unpredictable 

<	  15 ms	  

Sender	  walking	  away	  from	  receiver	  

Rateless insight: Avoid committing to a rate a priori 

Message bits: 

Channel bits: 
Transmission 1 

1 0 1 

Rate after transmission 1 is sent: 3/3 = 1 
Rate after transmission 2 is sent: 3/6 = 0.5 
Rate after transmission 3 is sent: 3/8 = 0.375 

[Luby, FOCS ’02]  

1 0 1 

Transmission 2 
1 0 1 

Trans. 3 
0 1 

Receiver: Accumulate, don’t discard bits 
Message LLRs: 

Channel LLRs: 
Transmission 1 

0 +1 −5 

0 +1 −5 

LLR bit( ) = log
Pr bit = 0( )
Pr bit =1( )

0 1 

“Strong ’1’ ” “Strong ‘0’ ” “Don’t know” 

After Transmission 1 

Receiver: Accumulate, don’t discard bits 
Message LLRs: 

Channel LLRs: 
Transmission 1 

−3 +1 −5 

0 +1 −5 

“Strong ’1’ ” “Strong ‘0’ ” “Don’t know” 

Transmission 2 
−3 0 0 

After Transmission 1 
After Transmission 2 
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Today 

“As	  a	  student,	  should	  I	  work	  on	  wireless	  networks?”	  
	  
It	  depends.	  
	  
ü What	  makes	  wireless	  hard	  and	  exciting?	  
ü What	  constitutes	  a	  good	  research	  question	  in	  
wireless	  networks?	  

•  What	  defines	  success	  in	  wireless	  networks?	  

Capacity, capacity, capacity 

•  But	  careful,	  it	  can	  be	  measured	  in	  many	  different	  ways	  
–  Network	  or	  point-‐to-‐point?	  
–  At	  many	  different	  layers:	  PHY,	  link	  layer,	  routing	  
–  Trace-‐driven	  or	  live?	  
–  Line	  rate?	  	  If	  not,	  interaction	  with	  the	  wireless	  channel?	  
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Figure 6: Rates achieved by spinal code with k = 4, B = 256, d = 1, and the other codes (Strider+ is Strider with our puncturing
enhancement). Experiments at each SNR average Raptor performance over 100-300 kbits of data, Strider over 5-20 Mbits, LDPC
over 2 Mbits, and spinal codes over 0.6 to 3 Mbits.

8.2 AWGN Channel Performance
Figure 6 shows three charts comparing Raptor codes, Strider, and

LDPC codes to spinal codes from experiments run on the standard
code parameters for each code. The first two charts show the rates
as a function of SNR, while the third shows the gap to capacity.
The two spinal code curves (256 and 1024 bits) both come closer to
Shannon capacity than any of the other codes across all SNR values
from �5 dB to 35 dB. The gap-to-capacity curves show that spinal
codes consistently maintain a smaller gap than all the other codes.

We aggregate by SNR to summarize gains under different con-
ditions. Above an SNR of 20 dB, spinal codes obtain a rate 21%
higher than Raptor/QAM-256, 40% higher than Strider, and 54%
higher than the LDPC envelope. Between 10 and 20 dB, spinal
codes achieve a rate 25% higher than Strider and 12% higher than
Raptor/QAM-256. At SNRs below 10 dB, spinal codes achieve a
rate 20% higher than Raptor/QAM-256 and 32% higher than Strider.

Strider. Strider uses 33 parallel rate-1/5 turbo codes with QPSK
modulation, so without puncturing, the rates it achieves track the
expression (2/5) ·33/` bits/symbol, where ` is the number of passes
required for successful decoding. In the tested SNR range, Strider
needs at least ` = 2 passes to decode, for a maximum rate of 6.6
bits/symbol. The puncturing enhancement we added (Strider+) pro-
duces the more graded set of achieved rates shown in Figure 6. At
low SNR, we find that Strider is unable to successfully decode as
many messages as spinal codes. Another source of inefficiency
in Strider is that the underlying rate-1/5 turbo code has a non-
negligible gap to capacity. The results (without puncturing) are
generally consistent with Figure 4a in the Strider paper [12]; it is
important to note that the “omniscient” scheme discussed in that
paper is constrained to modulation and coding schemes in 802.11a/g,
and as such has a significant gap to the Shannon capacity.

Raptor. We are unaware of any previously reported Raptor result
for the AWGN channel that achieves rates as high as those shown
in our implementation [26]. We believe that one reason for the
good performance is that we have a careful demapping scheme that
attempts to preserve as much soft information as possible. That
said, spinal codes still perform 12%–21% better across the entire
SNR range, with the greatest gains at low and high SNRs. There
are two reasons for better performance: first, spinal codes naturally
incorporate soft information, while Raptor (and also Strider) loses
information in the mapping/demapping steps, and second, the LT
code used in Raptor has some information loss. We experimented
with Raptor/QAM-64 as well, finding that it performs a little better
at low-to-medium SNR (16% worse than spinal codes, rather than
20%), but does much worse (54%) at high SNR. The dense QAM-
256 constellation does entail a significantly higher decoding cost for
Raptor, whereas spinal codes naturally support dense constellations.
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Figure 7: Throughput of the rateless spinal code compared to
various rated versions of the spinal code.

LDPC. The primary reason why spinal codes do better than the
best envelope of LDPC codes has to do with the ability of rateless
codes to take advantage of “lucky” channel conditions. We term this
the hedging effect. Intuitively, hedging is the ability to decode in
less time when the noise is low, without sacrificing reliability. This
property is more general than the LDPC comparison. In particular,
Figure 7 demonstrates that the rateless spinal code outperforms
every rated version of the spinal code at every SNR.

Constant SNR means that the distribution of the noise does not
vary, but the realized noise does vary substantially over time. Be-
cause rated codes cannot adapt to realized noise, they must be risk-
averse to ensure a high probability of decoding. Hence, they tend to
occupy the channel for longer than strictly necessary. By contrast,
rateless codes can use the channel for less time when the realized
noise is small and thus achieve higher rates. Due to the law of large
numbers (precisely, concentration), this effect diminishes with in-
creasing message length. For the same reason, rated codes approach
capacity only for long message sizes.

Small code block sizes. The results presented above picked favor-
able code block (message) sizes for each code. For many Internet
applications, including audio and games, the natural packet size
is in the 64-256-byte range, rather than tens of thousands of bits.
Understanding the performance of different codes in this regime
would help us evaluate their effectiveness for such applications.

Figure 8 shows the rates achieved by spinal codes, Raptor, and
Strider at three small packet sizes: 1024, 2048, and 3072 bits. Each
column shows the results obtained for data transfers in the SNR
range 5 to 25 dB. In this range, spinal codes outperform Raptor by
between 14% and 20% for these packet sizes.

The gains over Strider are substantial (2.5⇥ to 10⇥) even when
puncturing is used. To handle small packets in Strider, we used
the same number of layers and reduced the number of symbols per

56

“Spinal Codes,” Perry et al., 
SIGCOMM 2012 
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Figure 13: Aggregate TCP throughput (slow-fading mobility).

Simulation topology. The topology used in our simulations is
shown in Figure 12. N clients connect to an access point (AP) that
supports the 802.11a/g bit rates from 6 Mbps to 36 Mbps. The AP is
connected to a LAN gateway node by a point-to-point link of band-
width 50 Mbps and one-way delay of 10 ms. In each experiment,
N TCP flows are set up to transfer 1400 byte data frames in either
direction between the 802.11 clients and the corresponding wired
LAN nodes. Each node’s MAC queue length slightly exceeds the
bandwidth-delay product of the bottleneck wireless link.

Algorithms evaluated. We compare the performance of Soft-
Rate against the following rate adaptation algorithms.
1. Two SNR-based protocols: (i) a protocol that uses SNR feed-

back sent via the link-layer ACK to pick the transmit bit rate,
much like RBAR but without the RTS/CTS overhead, and (ii) a
protocol that uses the average SNR over multiple frames, much
like CHARM4. The SNR-BER relationships for both protocols
are computed from the traces used for evaluation.

2. Two frame-level schemes: (i) RRAA, and (ii) SampleRate. The
various parameters in these protocols are set as described in the
corresponding references, except for the interval over which
transmission time averages are computed in SampleRate, for
which a value of one second gave a better performance than the
ten second value suggested in [4].

3. An “omniscient” algorithm that always picks the highest rate
guaranteed to succeed, which a simulator with a priori knowl-
edge of channel characteristics computes from the traces.

6.2 Slow Fading Mobile Channels
In this section, we evaluate how well SoftRate can adapt to chan-

nel variations that occur at walking speeds in a slow fading channel.
Simulation setup. We simulate N = 1, . . . 5 TCP flows from

the 802.11 clients to the corresponding wired LAN nodes. We use
the ten walking traces (Table 4) to model the ten uni-directional
links. We assume perfect carrier sense among all senders.

Results. Figure 13 shows the aggregate TCP throughput ob-
tained by the various rate adaptation algorithms as a function of the
number of flows. We find that SoftRate outperforms all other al-
gorithms, and comes closest to the omniscient algorithm. SoftRate
gets up to 20% higher throughput than both SNR-based algorithms

4Our simulation does not need to rely on the channel reciprocity as-
sumptions used in [13] because we can afford to change the 802.11
link-layer ACK in the simulator to piggyback SNR information,
while CHARM aims to work with existing 802.11 cards.
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Figure 14: Rate selection accuracy with one TCP flow in a mo-
bile slow fading channel.
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Figure 15: Bit rates chosen by RRAA and SampleRate where
the optimal bit rate changes at t = 0: from a higher rate to a
lower rate (top) and from lower to higher (bottom).

trained over the traces because the BER prediction from SNR is
noisier than that using SoftPHY hints. We also found that using
averaged SNR information in CHARM leads to lower responsive-
ness to short-term SNR variations and hence slightly worse per-
formance than using just the instantaneous SNR value. SoftRate
achieves up to 2⇥ higher throughput than RRAA and almost 4⇥
higher throughput than SampleRate because frame-level algorithms
cannot adapt fast enough to channel fades that are caused due to
mobility, with the result that TCP ends up loosing multiple packets
in a window and reduces its offered load. We find that the loss rate
experienced by TCP is an order of magnitude higher with frame-
level algorithms than it is with SoftRate. We repeat with clients
receiving TCP traffic; results are similar to those described above.

For the simulation with one TCP flow, Figure 14 shows how
the bit rates picked by the various algorithms on every transmitted
frame compared against the highest bit rate that would have gotten
the frame through at that time. We find that SoftRate chooses the
correct bit rate over 80% of the time.

To better understand the performance of frame-level algorithms,
we simulate RRAA and SampleRate using a synthetic trace, where
the channel alternates between a “good” state (best transmit bit rate
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Localization 

•  Interesting	  problem,	  not	  “one	  size	  fits	  all”	  

•  RADAR,	  infrastructure-‐dependent	  approaches	  

•  Moving	  target:	  Shift	  to	  crowdsourcing	  and	  
infrastructure-‐free	  approaches	  

•  Basic	  metrics	  
–  Localization	  accuracy	  
–  Latency	  

In summary 

“As	  a	  student,	  should	  I	  work	  on	  wireless	  networks?”	  
	  
It	  depends.	  
	  
ü What	  makes	  wireless	  hard	  and	  exciting?	  
ü What	  constitutes	  a	  good	  research	  question	  in	  
wireless	  networks?	  

ü What	  defines	  success	  in	  wireless	  networks?	  

The take-away 

Great,	  you’ve	  decided	  to	  go	  into	  wireless	  
networks!	  

�
TODO: �
1.  Solve it better�
2.  Hack on new hardware�
3.  Take the next step �
4.  Solve a new problem�


