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Abstract
A methodical search for an efficient randomized algorithm for recursive 3-MAJ and 5-MAJ is intro-
duced and implemented, with a new complexity for the hard distribution for 5-MAJ given as O(4.4555™).
The techniques provided are general enough to work on other recursive evaluation problems with given
distributions.

1 Introduction

The goal of this paper is to develop a computerized search to find efficient randomized algorithms for certain
recursive evaluation problems, specifically recursive 3-MAJ and recursive 5-MAJ. This is accomplished by
defining a class of algorithms that can be represented in the program and using increasingly good heuristics
based on a hard distribution to determine which algorithm to choose.

The type of algorithms that are searched over are those that recursively evaluate descendants of a node
in some order, possibly affected by the results of the previous evaluations, until the evaluation of that node
can be determined. The simplest of these algorithms is just to evaluate all of the children and compute
the value from those results, but there are of course some quick optimizations to make. To restrict it to a
space that can be clearly defined and searched over, only nodes up to a predetermined depth will be queried.
The algorithms will be interpreted as a series of states that an algorithm can be in, represented by a tree
of depth d with some of the nodes filled in (evaluated) and some nodes unknown. For each state, there is
a choice of which node to evaluate and depending on the answer goes to one of the two resulting states.
The randomness comes in by randomly permuting the children of any newly seen node to avoid inputs more
adversarial than the hard distribution. For the rest of the paper, it will be assumed that the input is in the
hard distribution, which more work would need to be done to verify that it works for all distributions.

By treating each state as a problem to be solved, the actual search over the algorithms can be accomplished
by dynamic programming assuming one can compute for each state which descendent to query next given
results for the states with more nodes evaluated. For this paper, the choice is made based on a heuristic
taking into account the probabilities that a given node evaluates to a given answer in the hard distribution
and an estimate for the cost of querying a given node, which may be different for nodes at different depths
or with different descendents already evaluated. Once all of these choices are made, the complexity of the
algorithm can be computed by solving a (possibly large) system of linear recurrences, which not only gives
the complexity but also a better estimate for the heuristic, as will be seen later.

Much work has been done on finding algorithms for 3-MAJ, and the current best known is stated in [1]
with complexity O(2.64644"). Most of the work done in this paper is based on results from that work.



2 Preliminaries

2.1 Description of the states

The states that the algorithm of depth d are trees where each node is of depth at most d and has a value of
0, 1, or unknown, and an interior node has the value 0 or 1 iff that value can be determined using the value
of its children; for example, if it has two children that are 1 and one that is unknown, its value would be 1.
Additionally, it is required that each unknown leaf be at depth d so that the tree fully represents all of the
descendents that haven’t been evaluated yet.

The space of states that an algorithm can be in can be very large, even for fairly small depths. A few
steps can be taken to ameliorate this. The first basic rule is never evaluate a node that does not affect the
result. For the case of 3-MAJ, this amounts to not evaluating the third child of a node if the other two are
known to be the same. This is represented in the states by removing all of the children from a node whose
value is known from the tree. There are also some states that are equivalent by symmetry given that the
ordering of the children is arbitrary, which can give a large reduction in the number of states. Even with
these reductions, the number of states is superexponential, leaving the search only feasible up to depths two
or three.

2.2 Description of the subroutines

The key to how this algorithm works is the use of numerous mutually recursive subroutines. The subroutines
can be identified by states of depth strictly less than d corresponding to subtrees of a state of depth d. It
is important to note that each of these subtrees can be treated as a depth d tree with respect to evaluation
by adding three unknown children to every unknown leaf until it is a tree of depth d. Since the search will
calculate what subtree to evaluate for every state of depth d, the algorithms for each of these subroutines
will be computed along the way.

2.3 Probabilities of the states

For each state, the probability that it evaluates to 1 given the hard distribution can be calculated recursively
from the probabilities of its children. If p;, p2, and p3 are the probabilities for the children, then the
probability for the state is
p1p2(1 —p3) + p1(1 — p2)ps + (1 — p1)paps
1 —pip2ps — (1 = p1)(1 — p2)(1 — p3)

where the numerator is the probability that the tree evaluates to 1 and is in the hard distribution (two 1’s
and one 0) and the denominator is the probability that the node is in the hard distribution (not all three
the same).

2.4 Probabilities of the transitions

When evaluating a subtree, it will be useful to know what the probability is that the subtree evaluates to
a certain value given that the whole tree evaluates to a certain value. To get that formula, let T" be the
tree, S be the subtree, and T; be the resulting tree after S is evaluated to i, so the probability we need to
calculate is Pr[S = j|T = i]. By Bayes’ Theorem, Pr[S = j|T = i] = Pr[T" = i|S = j]Pr[S = j]/Pr[T =
i| = Pr[T; = i|Pr[S = j]/Pr[T = i]. By letting ¢ = 1 in the previous equation and summing over j,



Pr[T=1,S=0]+Pr[T=1,5=1] = Pr[Ty = 1]Pr[S = 0] + Pr[Ty = 1] Pr[S = 1] or Pr[T = 1] = Pr[Tp =
1](1 — Pr[S = 1]) + Pr[T1 = 1] Pr[S = 1]. Solving for Pr[S = 1] gives

Pr[T =1] — Pr[Ty = 1]

Pris=1] = Pr[Ty = 1] — Pr[Tp = 1]
Therefore, [ ](Pr] ] [ 1)
. ) Pr[T; =i|(Pr[T =1] - Pr[I; =1
Pr[S =j|T =i] = Pr(T = i (Pr[Th = 1] — Pr[TZ =1])

3 Algorithm

For a given depth d, calculate all possible states, call this set S;. For each state in Sy, the goal is to calculate
three things: an estimate for how long it would take to evaluate given that the answer is zero, an estimate for
how long it would take to evaluate given that the answer is one, and an array containing the expected number
of times each other subroutine is called. These values are calculated by choosing the best subtree to evaluate
according to some heuristic and are just weighted sums of the values from the two possible resulting trees
plus the adjustment for the evaluation at the current state, where the weightings are from the probabilities
given in section 2.4. In order to take advantage of dynamic programming, the order in which these states
are considered can either be as needing using memoization or in order of closest to being computed back to
the initial state where nothing is known. Once these values are computed, the system of linear recurrences
can be extracted from the arrays and solved to give a value for the base of the exponent in the running time
of the algorithm and to give new estimates for the constant for each subroutine. These new values can be
fed back into the program and repeated as many times as desired or until convergence.

3.1 Heuristic

The heuristic for choosing which subtree to evaluate is which one has the smallest expected value given the
hard distribution and approximations for how long it would take to evaluate said subtree. To accomplish
this, each tree will have an expected time to complete the evaluation given that the answer is 0 or 1 and the
approximations will be predetermined before every iteration of the algorithm. To get the formula to do so,
let T be the tree, S be the subtree, and T; be the resulting tree after S is evaluated to 7. As notation, let
Ex ; be the expected time to evaluate tree X to i. The expected time is

> Pr[T =i,S = j|(Es; + Er, ;)
i,5€{0,1}x{0,1}

The values of Er, ; are known from dynamic programming and Eg ; is from the approximations. The other
probability can be calculated using section 2.4 as Pr[T = i, S = j] = Pr[S = j|T = | Pr[T = i] It is also
necessary to calculate Er; using

Ery= Y PiS=j|T =il(Es;+Er,.)
je{0,1}
One important thing to note about these equations is that they are all linear in the approximate terms, Eg j,

so multiplying all of these approximations by a constant will make no difference in the choices made by the
algorithm, so it doesn’t matter how deep the tree is in terms of designing the algorithm.



3.2 System of linear recurrences

To calculate the expected running time of the generated algorithm, each subroutine can be treated as two
functions from the height of the original tree to the running time, one for each value the whole tree can
evaluate to, and by keeping track of how many times each subroutine is expected to be called at a smaller
height for each subroutine, a system of linear recurrences can be generated. The solution to the system of
recurrences is simplified by the fact that we only need an asymptotic answer, so only the largest eigenvalue of
the matrix for the recurrences needs to be considered. The corresponding constant terms for the asymptotic
solution are the values in the eigenvector multiplied by some global constant, but since these values are only
used in the heuristic for the next run of the program and the heuristic is independent of multiplication by a
global constant, a normalized eigenvector suffices.

4 Results

The algorithm was implemented and run for both 3-MAJ and 5-MAJ. In the 3-MAJ case, depths of 2 and
3 were the only feasable value. Depth 2 gave the same algorithm and analysis as was previously known.
Somewhat surprisingly, depth 3 gave no improvement. While this does not mean that there is definitely no
better algorithm of this type at this depth or higher, it certainly indicates that the known algorithm is a
rather good algorithm. 5-MAJ was run on depth 2 and gave a running time of about 4.4555", better than
the basic depth 1 algorithm, randomly picking children until you get three of the same value, with running
time 4.5". None of these took more than a few seconds to run and converged in no more than four iterations.

5 Conclusions

While no new bound was found for 3-MAJ, an upper bound for 5-MAJ was given that is new as far as I
could tell. Additionally, most of the techniques mentioned are general enough that efficient algorithms could
be found for other recursive evaluation problems given a hard distribution and some amount of symmetry.
Additional work could be done to try and remove the reliance on the knowledge of a hard distribution by
calculating it on the fly and it is possible that greater depths could be searched by expoiting some other
pruning mechanism besides basic symmetry. Ideally, this line of thought could provide examples of good
algorithms in order to find a pattern that could lead to a very good or optimal algorithm for one of these
problems that doesn’t necessarily follow the same template.

6 References
[1] Magniez, P., Nayak, A., Santha, M., Sherman, J., Tardos, G., and Xiao, D. 2013 Improved bounds for

the randomized decision tree complexity of recursive majority, arXiv:1309.7565v1

A Java source code for 3-MAJ

public static final int H=3; // Depth to search
public static final Trie[] trs=mew Trie[H]; // Ids for subroutines
public static final int[] total=mew int[H+1]; // Number by depth



public static int S=0;
public static final Tree FALSE—new Tree (0, 1), TRUEmmew Tree(1l, 2);

public static void main(String[] args) {
// Set up depth zero case
List<Tree> 10=new ArrayList<Tree>();
10 . add (new Tree (0.5, 0)); 10.add(FALSE); 10.add(TRUE);
List<List<Tree>> store=new LinkedList<List<Tree>>();
total [0]=3;
// Set up the rest of the trees
for (int i=0; i<H; i++) {
S+=10.size () —2;
trs [i]=new Trie(10.size ());
store.add(10);
10=expand (10, trs[i]);
total [i+1]=10.size (); }
Tree root=10.get (0);
// Initialize costs arbitrarily
double [] cost=new double[2xS];
for (int i=0; i<2xS; i++)
cost [1]=Math.random ();
double [][] mat=new double[2xS]|[2*S];
// Give unique identifiers to each subroutine at each detph
int add=total [H-1]—2;
for (int i=H-2; i>=0; i—) {
for (Tree t: store.get(i)) {
int id=t.id:
if (id==1||id==2) continue;
if(id>2) id—=2;
id4=add;
Tree help=t.getCorrespondingTree(i);
int id2=help.id;
if (1d2>2) id2 —=2;
id24=add—total [i4+1]+2;
mat[2%id ][2%1d2]=1; mat[2xid +1][2%xid2+1]=1; }
add+=total [i]—2; }
// Iterate the search some number of times
for (int times=0; times <20; times++) {
root .setUpRecurse (cost ); add=0;
for (Tree t: store.get(H—1)) {
int id=t.id;
if (id==1||id==2) continue;
if (id>2) id—=2;
id4=add;
Tree help=t.getCorrespondingTree (H—1);
mat[2«id]=help.recurse0;



mat [2xid+1]=help.recursel; }
// Solve the recurrence
double e=bigEigenvalue (mat, cost);
System.out.println(e);
for (Tree t: 10) {
t.recurse0=null; t.recursel=null; }

}

// From trees at depth i, calculate trees at depth i+1
public static List<Tree> expand(List<Tree> st, Trie tr) {
List<Tree> ans=new ArrayList<Tree>();
ans.add (new Tree(st. get( ), st.get(0), st.get(0), 0));
tr.add(ans.get (0), 0, 0, 0);
ans.add(st.get (1));
ans.add(st.get (2));
int on=3;
// Iterate over triples, taken in nondecreasing order
// to take advantage of symmetry
for (int 1=0; i<st.size (); i++) {
for (int j=i; j<st.size(); j++) {
for (int k=j; k<st.size (); k++) {
// States already added
f (i=08&j=—=0&&k==0) continue;
if (j=1&&k==1) tr.add(FALSE, i, j, k);

Y

else if(j=2&&k==2) tr.add(TRUE, i, j, k);
else if(i==1&&j==1) tr.add(FALSE, i, J , k)
else if(i=28&j==2) tr.add(TRUE, i, j, k);

else { // A new state
Tree temp;
ans.add (temp=new Tree(st.get (i), st.get(j),
st.get(k), on));
tr.add (temp, i, j, k); on++; }
38

return ans;

}

public static class Tree {
Tree a, b, c; double p; int id;
// Ezpected number of times each subroutine is run
double [] recurse0, recursel;
// Values for the heuristic
double expect0=0, expectl=0;
Move best ;

public Tree (double d, int id.) {



p=d; id=id_.; }

public Tree (Tree a_., Tree b_, Tree c_, int id_) {
a=a_; b=b_; c=c_;
// Calculate probability
double sl=a.p+b.p+c.p;
double s2=a.pxb.p+a.pxc.pt+b.pxc.p;
double s3=a.pxb.pxc.p;
p=(s2-3%s3)/(s1—s2); id=id_; }

public void setUpRecurse(double[] cost) {
if(recurse0!=null) return; // Return if already computed
recurse0=new double[2xS]; recursel=new double[2xS];
if(id==1||]id==2) return;
List <Move> moves=getMoves (H);
best=null; double bestE=Double.POSITIVE_INFINITY ;
// Loop over all possible moves to find the best one
for (Move m: moves) {
m. target0.setUpRecurse(cost );
m. targetl.setUpRecurse(cost );
double ps=(m. target0.p—p)/(m. target0.p—m. targetl .p);
double pO=ps*(1—m.targetl.p)/(1—p);
double pl=psx*(m.targetl.p)/(p);
double tempO=p0x*(m.targetl.expectO+cost [m.id=*2+1])+
(1-p0)*(m. target0.expectO+cost [m.id x2]);
double templ=pl#*(m.targetl.expectldcost [m.id*2+1])+
(I1-pl)*(m. target0.expectl+cost [m.id x2]);
double temp=pxtempl+(1—p)=tempO;
if (temp<bestE) {
bestE=temp; expectO=tempO;
expectl=templ; best=m; } }
// Update the wvalues with the best move
double ps=(best.target0.p—p)/(best.target0.p—best.targetl.p);
double p0=1-ps*(1—Dbest.targetl.p)/(1—p);
double pl=psx*(best.targetl.p)/(p);
for (int i=0; i<2xS; i++) {

[
xbest . target0.recurse0[1i]
recursel [i]=plxbest.targetl.recursel [i]+(1—pl
]

recurse0 [best.id*2+1]+=1-p0; recurse0[best.id*2]+=p
recursel [best.id*2+1]+=pl; recursel [best.id*2]+=1—p

}

private List<Move> getMoves(int h) { // Get possible moves
if (a=null) { // Only for depth 0 unknown



List<Move> ans=new LinkedList<Move>();
if (id==0) ans.add(new Move (0, FALSE, TRUE));

return ans; }
List <Move> temp=new LinkedList<Move>();

// Add an evaluation only if this is a subtree

if (h<Hekeid!=1&&id 1=2)

temp . add (new Move ((1d==070:id —2), FALSE, TRUE));

// Add the moves for all three children
List <Move> temp2=a.getMoves(h—1);
for (Move m: temp2) {
m. targetO=trs [h—1].get (m. target0.id
m. targetl=trs [h—1].get (m. targetl.id,
if (h<H) m.id+=total [h]—-2; }
temp.addAll (temp2); temp2=b.getMoves(h—1);
for (Move m: temp2) {
m. targetO=trs [h—1]. get (m. target0.id ,
m. targetl=trs [h—1].get (m. targetl.id,
if (h<H) m.id+=total [h—1]-2; }
temp . addAll (temp2); temp2=c.getMoves(h—1);
for (Move m: temp2) {
m. targetO=trs [h—1]. get (m. target0.id ,
m. targetl=trs [h—1].get (m. targetl.id,
if (h<H) m.id+=total [h—1]-2; }
temp.addAll (temp2);
return temp; }

public Tree getCorrespondingTree (int h) {

if (a=null) {
if (id==0) return trs[h].get(0, 0, 0);
else return this; }

Tree ta=a.getCorrespondingTree(h—1);

Tree tb=b.getCorrespondingTree(h—1);

Tree tc=c.getCorrespondingTree(h—1);

return trs[h].get(ta.id, tb.id, tc.id); }

}

// Stores information for a single transition
public static class Move {
int id; Tree targetO, targetl;

public Move (int a, Tree b, Tree c¢) {
id=a; targetO=b; targetl=c; } }

public static class Trie {
int n; Tree ans; Trie[] next;

b.
b.

o o

o o

id,
id,

e lNe]

e BNl

o ©



public Trie (int n_) { n=n_; }
public void add(Tree v, int... key) { addH(0, v, key); }

private void addH(int on, Tree v, int[]| key) {
if (on—=key.length) {
ans=v; return; }
if (next=—null) next=new Trie[n];
if (next[key[on]]==null) next[key[o
next [key[on]].addH(on+1, v, key);

n]]=new Trie(n);
}
public Tree get(int... key) {

Arrays.sort (key); return getH(0, key); }

private Tree getH(int on, int[] key) {
if (on—key.length) return ans;
return next [key[on]].getH(on+1, key); }

}

// Uses power iteration to solve the recurrence
public static double bigEigenvalue(double[][] m, double[] w) {
double [] t=new double|w.length |;
double ans=0;
for (int times=0; times <100; times++) {
matHit (m, w, t); ans=0;
for (int i=0; i<w.length; i++4) ans+=t[i]*xt[i];
ans=Math. sqrt (ans);
for (int i=0; i<w.length; i++) dw[i]=t[i]/ans;
}
matHit (m, w, t); double num=0; double den=0;
for (int i=0; i<w.length; i++) {
numd=t [i]*w[i]; dent=w[i]*w[i]; }
return num/den; }

public static void matHit(double[][] m, double[] in, double[] out) {
for (int 1=0; i<out.length; i++) out[i]=0;
for (int 1i=0; i<out.length; i++)
for (int j=0; j<out.length; j++)
out [ijl+=m[i][j]+in[j];



