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Abstract

Given six or more pairs of corresponding points on two calibrated images, existing
schemes for estimating the essential matrix (EsM) use some manifold representation to
tackle the non-convex constraints of the problem. To the best of our knowledge, no
attempts were made to use the more straightforward approach of integrating the EsM
constraint functions directly into the optimization using Adaptive Penalty Formulations
(APFs). One possible reason is that the constraints characterizing the EsM are nonlin-
early dependent and their number exceeds the number of free parameters in the optimiza-
tion variable.

This paper presents an iterative optimization scheme based on penalty methods that
integrates the EsM constraints into the optimization without the use of manifold-based
techniques and differential geometry tools. The scheme can be used with algebraic,
geometric, and/or robust cost functions. Experimental validations using synthetic and
real data show that the proposed scheme outperforms manifold-based algorithms with
either global or local parametrizations.

1 Introduction
The estimation of the essential matrix (EsM) plays a central role in structure-from-motion
algorithms for datasets of all sizes starting from small (e.g. two images) [11] to large (e.g.
thousands of images) [1] ones. Given a set S of more than five noisy (but outlier-free) corre-
spondences, several algorithms have been proposed to compute the 3×3 EsM that best fits
S. These algorithms can be categorized as non-iterative or iterative. The eight-point [7, 11]
(when |S| ≥ 8) and the overdetermined five-point [14, 18] schemes are examples of the non-
iterative schemes for EsM estimation. Despite their efficiency and widely available imple-
mentations, most of the time they are used to initialize more complicated schemes to improve
the accuracy of the estimates.

Iterative schemes for EsM estimation generally lead to more accurate results. While the
minimization of the nonlinear geometric cost functions is one reason these schemes work
generally better [12], the other reason is that they take into account the special structure of
the manifold E of valid EsMs through different ways with varying degrees of success. The
simplest way is to project the current estimate Ek onto E after each iteration [17]. Another
popular way is to use a global parametrization of E [7, 17, 19]. While computationally sim-
ple, such global parametrizations can have degeneracies and convergence issues since they
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ignore the fact the EsM manifold is only locally diffeomorphic to R5 [12]. Ma et al. [12] pro-
posed a Newton algorithm for the intrinsic optimization over E . Helmke et al. [8] identified
convergence issues with the algorithm in [12] and proposed a hybrid Newton/Gauss-Newton
algorithm for the intrinsic minimization over E in addition to an alternative set of simpler
parametrizations that may be used interchangeably with the one proposed in [12].

This paper presents an iterative scheme for estimating EsMs that can minimize alge-
braic as well as geometric cost functions. The proposed scheme integrates the EsM con-
straints into the optimization algorithm using penalty methods [2], which are conceptually
simpler to understand than Riemannian manifold-based algorithms (such as [12] and [8]).
Our experiments show that the proposed APF algorithm outperforms Helmke’s local mani-
fold scheme [8], in terms of accuracy, and the Levenberg-Marquardt-based global manifold
scheme [7, 17, 19] in terms of both accuracy and speed.

Section 2 of this paper reviews the relevant mathematical background while Section 3
describes and provides analytical derivatives for the cost and constraint functions necessary
for our work. We present our APF-based scheme in Section 4. The proposed scheme
is evaluated and the obtained results are discussed in Section 5. Concluding remarks and
future work are described in Section 6.

2 Mathematical Background
Here we list the basic properties of epipolar geometry and the EsM necessary for under-
standing the proposed schemes. Detailed derivations of these basic properties can be found
in [5, 7, 13].

Notation The transpose of a matrix E is denoted by E′. If ttt ∈ R3, we use [ttt]x to denote
the corresponding skew-symmetric matrix which permits expressing the cross-product as a
matrix-vector product, i.e. ttt× xxx = [ttt]x xxx ∀ttt, xxx ∈ R3. We will occasionally use the 9-vector
eeek to refer to vec{Ek}, the column-wise vectorization of the kth estimate of E. Similarly,
mat{eeek} gives the 3×3 matrix Ek corresponding to eeek. If xxx ∈ Rm, we define the homoge-
neous form x̃xx ∈ Rm+1 as:

x̃xx =
(

xxx
1

)
. (1)

The subscript l (resp. r) in p̃ppl (resp. p̃ppr) indicates that the vector should appear at the left
(resp. right) side of a quadratic form (e.g. p̃pp′lEp̃ppr).

The Epipolar Constraint Suppose we have two calibrated pinhole cameras observing
a scene at the same time from two different locations. The epipolar constraint expresses the
fact that the perspective projections pppl and pppr of any 3D point PPP onto the image planes of
camera 1 and camera 2 must satisfy the following algebraic relationship [5, 7]:

p̃pp′l [ttt]x Rp̃ppr = p̃pp′lEp̃ppr = 0. (2)

where ttt is the relative translation vector of camera 2, R is the 3× 3 relative orientation of
camera 2, and E = [ttt]x R is the 3×3 essential matrix (EsM). The pair of related projections
(pppl , pppr) is referred to as a correspondence or match. If we know a set of n ≥ 5 (calibrated)
matches between two cameras with unknown poses, we can use these n correspondences
to obtain an estimate of E from which (and other conditions [14]) the relative pose can be
recovered (except for the scale of ttt).

Essential Matrix Characterization A 3x3 matrix E is an EsM if and only if it can
be written as the product [ttt]x R for some non-zero vector ttt ∈ R3 and a 3x3 rotation matrix
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R [5, 7]. We hereafter use E ⊂ R3×3 to refer to the set/manifold of all EsMs. Due to the
homogeneity of the epipolar constraint (2), an EsM has only five degrees of freedom (dofs)
rather than six dofs: three dofs for R and only two dofs for the orientation of ttt.

Equivalently, E is an EsM if and only if it has one singular value being zero and the
other two being equal [5, 7, 8]. In other words, the singular value decomposition (SVD) of
the normalized version of E = UD0V′ where D0 =

√
0.5diag(1,1,0). This characterization

provides an easy way to obtain an EsM E from any 3x3 matrix B that may not be an EsM.
Basically, one computes the SVD of B = UBDBV′B and then sets E = UBD0V′B. We refer
to this process as the SVD-correction. It yields from E the closest EsM to B (under the
Frobenius norm) [8]. This is the standard method to correct estimates of E obtained by
schemes that either do not enforce the EsM constraints (e.g. the eight-point scheme [7, 11])
or need to compensate for round-off errors (e.g. the five-point algorithm [6, 14, 18]).

A third equivalent characterization for a non-zero matrix E to be an EsM is given by the
following 3×3 matrix equation [6, 14, 18]:

E′EE′ = 0.5tr(E′E)E′. (3)

Intuitively, this equation implies that every row (or column) of E is a singular vector of E
with singular value s =

√
0.5tr(E′E). It follows that exactly two rows (or columns) of E

are independent (and so E must be singular). In addition, the two non-zero singular values
of E are equal to s. Eq. (3) provides a redundant set of nine cubic polynomial equations
where the coupling structure is nonlinear. We hereafter refer to this matrix equation as the
matrix constraint (MC). Along with the homogeneous property, we use the MC to define the
constraints for estimating the EsM using the penalty-based scheme described in this paper.
The MC, homogeneity and the zero-determinant property have been used in most of the
popular five-point EsM estimation schemes [6, 14, 18].

For the penalty-based scheme proposed later in Section 4 and for our experiments, we
use dE(E) to denote the Frobenius distance of the normalized version of the non-zero 3×3
matrix E and the closest EsM Ê ∈ E (assuming the SVD of E = UDV′) [7, 8]:

dE(E) =

∣∣∣∣∣∣∣∣ 1
||D||F

D−D0

∣∣∣∣∣∣∣∣
F
. (4)

Error Criteria and Sum-of-Squares Cost Functions If a correspondence (p̃ppl , p̃ppr) vi-
olates the epipolar constraint (2), the algebraic distance (error) dr(pppl , pppr) = p̃pp′lE p̃ppr is the
simplest way to quantify the violation even though it has been shown to be biased [5, 7]. It
can also be written in the dot-product form:

dr(pppl , pppr) = p̃pp′lEp̃ppr = (p̃ppl⊗ p̃ppr)
′eee. (5)

where (p̃ppl⊗ p̃ppr)
′ =
[

xl p̃pp′r yl p̃pp′r p̃pp′r
]

is the transpose of the Kronecker product of p̃ppl and
p̃ppr.

Assuming the noise in each coordinate of (pppl , pppr) is IID zero-mean Gaussian, the max-
imum likelihood (ML) estimate (p̂ppl , p̂ppr) of the true correspondence is the minimizer of
||p̂ppl− pppl ||

2 + ||p̂ppr− pppr||
2 subject to ˜̂ppp′lE ˜̂pppr = 0 [20]. The reprojection error dE measures the

distance from (pppl , pppr) to its ML estimate and is well approximated by its first-order approx-
imation ds known as the Sampson distance and which has the following closed form [4, 20]

ds(pppl , pppr) =
dr(pppl , pppr)

g(E)
=

p̃pp′lEp̃ppr√
||D1E p̃ppr||

2 + ||D1E′ p̃ppl ||
2
. (6)
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where D1 = diag(1,1,0).
Derivatives of dr and ds with respect to eee = vec{E} are used in this paper. Since dr is

linear, the derivative ∇∇∇dr = ∇∇∇eeedr ∈ R9 is easily found to be independent of eee:

∇∇∇dr(eee) = p̃ppl⊗ p̃ppr. (7)

The derivative ∇∇∇ds ∈ R9 is derived, using the rules in [15], as

∇∇∇ds(eee) = vec{∇∇∇Eds(EEE)}= vec
{

1
g(E)

[
p̃ppl p̃pp′r−

ds(E)
g(E)

(
D1Ep̃ppr p̃pp′r + p̃ppl p̃pp′lED1

)]}
. (8)

3 Essential Matrix Estimation Problem
Given n ≥ 6 calibrated, noisy (but outlier-free) correspondences {pppi

l , pppi
r}n

i=1, we wish to
estimate an EsM that adheres as much as possible to the observed data. To this end, we solve
a least-squares optimization problem of the following form:

argmin
eee

f (eee) = 0.5
n

∑
i=1

d2
i (eee) = 0.5 ||ddd(eee)||2 , (9)

subject to hhh(eee) = 000. (10)

where ddd is a vector in Rn stacking the individual di’s. The residual di can either be dri =
dr(pppi

l , pppi
r) or dsi = ds(pppi

l , pppi
r). The equality constraint function hhh : R9→ Rp (where p is the

number of constraints) is defined such that hhh(eee) = 000 iff E = mat{eee} ∈ E . Eq. (9, 10) is the
main optimization problem solved in this paper.

Algebraic Residual When the residual d = dr, we refer to f as the algebraic cost func-
tion Cr. In this case, f = Cr is quadratic (and convex) in eee. However, the constrained opti-
mization problem is still not convex because the equality constraint function hhh : R9→ Rp is
not linear. The gradient ∇∇∇Cr(eee) and the Hessian H f (eeek) = HCr(eeek) are given as:

∇∇∇Cr(eee) =
n

∑
i=1

(∇∇∇dri(eee))dri(eee) = (
n

∑
i=1

(p̃ppi
l⊗ p̃ppi

r)(p̃ppi
l⊗ p̃ppi

r)
′)eee = Aeee, HCr(eeek) = A. (11)

where A = ∑
n
i=1(p̃ppi

l ⊗ p̃ppi
r)(p̃ppi

l ⊗ p̃ppi
r)
′ is a 9 x 9 symmetric positive (semi-)definite matrix

commonly known as the moment matrix. If Cr is used in an iterative estimation algorithm,
the Hessian can be pre-computed once and used in all iterations [3, 7]. The gradient can be
efficiently computed each iteration in constant time independent of n.

Geometric Residual When the residual d = ds, we refer to f as the geometric (Sampson)
cost function Cs. Unlike Cr, Cs is neither quadratic nor convex in eee. Assuming that we know
a guess eeek and we wish to find the best update δδδ

k ∈ R9, we convexify Cs by replacing
ds(eeek +δδδ

k) by the first-order Taylor approximation at eeek given by ds(eeek)+∇∇∇
′ds(eeek)δδδ k. With

this approximation, the gradient and approximate Hessian at eeek are given by:

∇∇∇ f (eeek) = ∇∇∇Cs(eeek) =
n

∑
i=1

dsi(eee
k)∇∇∇dsi(eee

k), H f (eeek) =
n

∑
i=1

∇∇∇dsi(eee
k)∇∇∇′dsi(eee

k). (12)

Form of The Constraint Function hhh The constraint function hhh : R9→R10 used in this
paper consists of two parts. The first part consists of a scalar function that ensures that the
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EsM is non-zero. For example, hhh1(eee) = ||eee||2−1 ensures that the EsM has a norm equal to
1. We use a slightly different way of imposing the non-zero property in our APF scheme.
We defer the description of this alternative way till Section 4. For now, the derivative of hhh1
at eeek is given by

∇∇∇hhh1(eeek) = 2eeek. (13)

The second part of hhh consists of the nine cubic functions derived from (3):

hhh2(eee) = vec
{

E′EE′−0.5tr(E′E)E′
}

(14)

This ensures that E is singular with the two other singular values equivalent. The derivative
∂∂∂hhh2
∂∂∂Ei j

at eeek is given by

∂∂∂hhh2

∂∂∂Ei j
= vec

{
I jiEkEk′+Ek′Ii jEk′+Ek′EkI ji−Ek

i jE
k−0.5tr(Ek′Ek)I ji

}
. (15)

where Ii j is the 3× 3 matrix that has all zeros except a value of 1 at the entry (i, j), for
i, j ∈ {1,2,3}. The 10×9 Jacobian Jk

hhh = Jhhh(eeek) of the complete function hhh at eeek is given by

Jk
hhh =

[
∇∇∇
′hhhk

1
Jk

2

]
=

[
2eeek′

∂∂∂hhh2
∂∂∂E11

∂∂∂hhh2
∂∂∂E21

∂∂∂hhh2
∂∂∂E31

∂∂∂hhh2
∂∂∂E12

∂∂∂hhh2
∂∂∂E22

∂∂∂hhh2
∂∂∂E32

∂∂∂hhh2
∂∂∂E13

∂∂∂hhh2
∂∂∂E23

∂∂∂hhh2
∂∂∂E33

]
. (16)

4 Adaptive Penalty Formulations (APFs)
A penalty formulation provides an intuitive way of enforcing constraints during optimiza-
tion [2]. The idea is to relax the constraints of the problem while making violating them
expensive. This is done by augmenting the cost function f (eee) with a penalty term q(eee)
that incurs very high cost when hhh(eee) 6= 000 and evaluates to 0 when hhh(eee) = 000. There are
different choices for the penalty function q [2]. In this work, we use the quadratic penalty
qc(eee) = 0.5c ||hhh(eee)||2 (with c > 0) which is popular in nonlinear programming, computer
vision and machine learning [2, 10, 16]. If we let fc(eee) = f (eee)+qc(eee) denote the APF cost
function, we see that fc(eee) = f (eee) ∀eee ∈ E since qc(eee) = 0 ∀eee ∈ E . In addition, if we let
eee∗c = argmineee∈R9 fc(eee) and eee∗ = argmineee∈E f (eee), we can see that

fc(eee∗c)≤ fc(eee∗) = f (eee∗)+qc(eee∗) = f (eee∗). (17)

and that f (eee∗c) ≤ f (eee∗c)+ qc(eee∗c) = fc(eee∗c) ≤ f (eee∗). In other words, the minimizer eee∗c of the
penalty-augmented function fc has a lower (or equal) value of the original cost f than the
minimizer of f subject to eee ∈ E . Theoretically, we can make the optimal sets of the PF
and the original EsM function f equivalent by choosing c close to ∞ which makes q(eee) =
∞ ∀eee /∈ E and in which case fc(eeeg)< fc(eeeb) = ∞ ∀eeeg ∈ E ,eeeb /∈ E . In practice, we repeatedly
compute the minimum eee∗c of fc for a gradually increasing sequence {ck} to avoid numerical
conditioning problems [2].

We use the quadratic penalty method in our scheme to enforce the MC constraint hhh2(eee) =
000. We keep eee away from zero by requiring the update δδδ

k to satisfy < eeek,δδδ k >= 0. Assuming
eeek 6= 000, it is easy to see that ||eeek+1||2 = ||eeek + δδδ

k||2 = ||eeek||2 + ||δδδ k||2 ≥ ||eeek||2 > 0. This
strategy results in an update δδδ

k that is orthogonal to eeek or, equivalently, δδδ
k has a zero radial

component along eeek. This is desirable in practice because the exact scale of eeek is insignificant
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6 FATHY, ROTKOWITZ: ESM ESTIMATION USING APF

(as long as it is non-zero) and radial updates along eeek merely adjust its scale rather than
improving the solution.

The penalty formulation of the problem is given by

argmin
δδδ

k∈R9

fck(eee
k +δδδ

k) = f (eeek +δδδ
k)+0.5ck||hhh2(eeek +δδδ

k)||2, subject to eeek′
δδδ

k = 0. (18)

where f : R9→ R is the cost function.
We then build a convex quadratic program (QP) approximation to the above problem

by (a) replacing f with a convex second-order Taylor approximation 0.5δδδ
k′H f (eeek)δδδ k +

∇∇∇
′ f (eeek)δδδ k + f (eeek) and (b) replacing hhh2(eeek + δδδ

k) with a linear Taylor approximation hhhk
2 +

Jk
2δδδ

k where hhhk
2 = hhh2(eeek). The resulting QP is given by:

argmin
δδδ

k∈R9

f̂ck(eee
k +δδδ

k) =
1
2

δδδ
k′(Hk

f + ckJk′
2 Jk

2)δδδ
k +(∇∇∇ f k + ckJk′

2 hhhk
2)
′
δδδ

k + const,(19)

subject to eeek′
δδδ

k = 0. (20)

where Hk
f = H f (eeek) and ∇∇∇ f k = ∇∇∇ f (eeek). Both ∇∇∇ f k and Hk

f can be computed from (11) when
f = Cr or from (12) when f = Cs. Introducing a scalar Lagrange multiplier v allows us to
write the corresponding Lagrangian as:

L(δδδ k,v) =
1
2

δδδ
k′(Hk

f + ckJk′
2 Jk

2)δδδ
k +(∇∇∇ f k + ckJk′

2 hhhk
2)
′
δδδ

k + veeek′
δδδ

k + const. (21)

The partial derivatives ∇∇∇
δδδ

k L and ∇∇∇vL must be zero at the optimal (δδδ k,v) [2]. This gives rise
to the following 10×10 symmetric linear system of equations:[

Hk
f + ckJk′

2 Jk
2 eeek

eeek′ 0

](
δδδ

k

v

)
=

(
−(∇∇∇ f k + ckJk′

2 hhhk
2)

0

)
. (22)

or more compactly as Bkxxxk = bbbk. (23)

Rather than using the LDL or LU factorizations, we use the SVD factorization of Bk = USV′
to solve for xxxk as it is more numerically stable [9]. This is recommended because the block
Hk

f + ckJk′
2 Jk

2 usually has a relatively high condition number. We then use δδδ
k to compute the

new estimate eeek+1 = eeek +δδδ
k.

Controlling The Penalty Parameter Finding an effective strategy for adapting the
penalty parameter ck is the most critical ingredient for the success of a penalty-based al-
gorithm [2, 10]. We consider updating ck only if (a) we have done enough iterations (at least
3) with the current value of ck to ensure the solution eeek has achieved some progress with the
current value of ck, and (b) the drop in the value of ||hhh2(eeek+1)||2 is found to be not adequate,
i.e. ||hhh2(eeek+1)||2 > γ||hhh2(eeek)||2 where we set γ = 0.5. If any of the two conditions is not
met, we keep ck+1 = ck. Otherwise, we use the update rule ck+1 = min(βck,cmax) where the
penalty multiplier β > 1 controls the speed and the robustness of the convergence (this is
demonstrated empirically in Section 5). We set c0 = 10−5 and cmax = 109.

Terminating Iterations We stop iterating if a pre-set maximum number of iterations is
reached or if eeek converges (i.e. ||δδδ k||2 ≤ s1 = 10−14) and the limit point is close enough to E
(i.e. dE(eeek +δδδ

k)≤ s2 = 10−9).
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Figure 1: The x− z planar view of the configuration of the synthetic scenes used in our experiments. The points
are generated uniformly inside the cube B centered at c = (0,0,−10)′ having side length 4. The frame of camera A
is fixed at the origin whereas the location OB of camera B is chosen uniformly on the hemisphere with radius 1 in
front of camera A. Camera B is oriented to have zero roll and such that it fixates at a random point sss in the vicinity
of ccc. In particular, we set sss = ccc+uuu where uuu is uniformly chosen from [−0.5,0.5]3. The two cameras are assumed
to have equal focal length f = 1000 and square pixels.

5 Experimental Evaluation

We compare the performance of the proposed scheme and existing schemes for EsM es-
timation using synthetic and real data. We include in the comparison two instances of
the proposed penalty-based algorithm: one with the penalty multiplier β = 50 (labeled
as Proposed-β = 50) and another with β = 4 (Proposed-β = 4) to demonstrate the effect
of the penalty multiplier β , which controls the rate at which the penalty parameter ck is
grown over time, on robustness and speed. The other schemes included in the compari-
son are (a) the overdetermined five-point scheme (5-pt) [18], (b) a manifold-based scheme
that uses a global over-parametrization eee : R3×R4 → E where the 7-D parameter vector
θθθ consists of a 3-vector representing translation and a 4-D quaternion encoding rotation
(Global-Manifold) [7], and (c) Helmke’s intrinsic manifold scheme using the local Cayley
parametrization (Local-Manifold) [8]. We tried the other parametrizations from [8] but we
included only the results of the Cayley parametrization as they all produce slightly differing
results with the Cayley parameterization being occassionally the most robust.

All schemes are set to minimize the Sampson cost function. The Global-Manifold
scheme uses Levenberg-Marquardt algorithm [5, 7] for the minimization. Among the pos-
sible candidate solutions generated by the five-point scheme, we select the candidate that
yields the lowest RMS Sampson error. This is used in the comparison and is also used to
initialize the rest of the schemes.

We excluded the eight-point scheme from the comparison as it yields very inaccurate
results compared to the other schemes. Showing its results in the plots would make the
curves of all other schemes get too close together to be easily compared.

Parameter Settings For all iterative schemes, we set the maximum number of iterations
to 1000 and the convergence threshold s1 = 10−14. We ran all experiments using MATLAB
on a Dell Precision T3600 workstation running Windows 7.

Metrics For each estimated solution E by a given scheme, we normalize E so that
||E||2F = 1. Next, we measure the EsM manifold distance dE(E) to assess how well the
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Figure 2: Column 1: (a) The average RMS Sampson error of each scheme at each noise level measured over
75 random scenes with n = 6 correspondences. (b) The average running time taken by each scheme for each noise
level for n = 6. (c) The geometric mean of the manifold distances dE of the estimates obtained by each scheme
for each noise level for n = 6. The suffix ’-U’ in the labels of the proposed schemes denotes the absence of any
SVD correction before measuring dE . Columns 2, 3, 4: The same plots of Column 1 but for n = 10,20, and 250,
respectively.

result E adheres to the EsM constraints. We then SVD-correct E and use it to compute the
root-mean-square (RMS) of the Sampson distance ds on the current subset of points. We
also record the running time taken by each scheme. When we get multiple measurements
from repeated experiments with a given scheme, we summarize these measurements with
the arithmetic mean except for the manifold distance which is summarized by the geometric
mean.

5.1 Synthetic Data

We generate 75 two-view scenes each involving a different random relative pose (and so a
different EsM) and a different random set of n 3D points. The scenes follow the configuration
shown in Fig. 1. For each of the 75 scenes, we project the 3D points on the two cameras
and add noise to the pixel coordinates of the resulting correspondences. The noise added to
each coordinate is IID Gaussian with zero mean and a standard deviation σ pixels. Different
noise standard deviations between 0 and 5 pixels are tried with the correspondences of each
scene. After calibrating the correspondences, we run each scheme on the 75 noisy scenes at
each noise level and record its mean RMS Sampson error, mean running time and geometric
mean of the manifold distance. The obtained results are graphed in Fig. 2 for n = 6,10,20,
and 250 correspondences.

The graphs indicate that the lowest error is almost always achieved by the proposed
penalty scheme. This is the case for the various values of n. The graphs also show that the
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Figure 3: Row 1: (a) House image 1. (b) House image 2. (c) RMS Sampson error for each point count with
average taken over 75 different random subsets. (d) The average of the corresponding running times. Row 2: (a)
Corridor image 3. (b) Corridor image 4. (c) RMS Sampson error for each point count with average taken over
75 different random subsets. (d) The average of the corresponding running times. Row 3: (a) Merton A image 1.
(b) Merton A image 2. (c) RMS Sampson error for each point count with average taken over 75 different random
subsets. (d) The average of the corresponding running times.

Global-Manifold (GM), which is the slowest, produces more accurate results than the Local-
Manifold (LM) scheme proposed by [8] for all n except n = 6. This may be explained by the
fact that LM uses iteratively reweighted least-squares which results in fixed points that are
not necessarily critical points of the Sampson cost function. Another explanation is that it
uses a hybrid Newton/Gauss-Newton iterative scheme which is faster but less robust than the
the Levenberg-Marquardt scheme employed by GM. The graphs also show that increasing
the penalty multiplier β from 4 to 50 enhances the speed of the penalty-based scheme at
the expense of a slight loss of robustness (see the sudden jump of the average RMS error
of Proposed-β = 50 at σ = 4.5 for n = 6). The graphs also indicate that the penalty-based
methods succeed in converging to estimates with manifold distances consistently below 10−9

(which is the convergence threshold used in our implementation).

5.2 Real Data

The Oxford dataset [21] offers a number of image sequences and provides a set of (noisy)
coordinates of corresponding points between the images. The availability of the intrinsic
camera parameters allows us to calibrate the coordinates and subsequently run EsM estima-
tion. We use 3 pairs of images from 3 different sequences to compare the different schemes.
For each pair, we try various numbers of correspondences (in addition to using the full set of
correspondences) and form 75 random subsets of correspondences for each count considered.
We then run the various EsM estimation techniques on these subsets and compute the average

Citation
Citation
{Helmke, H{ü}per, Lee, and Moore} 2007

Citation
Citation
{Werner and Zisserman} 2002



10 FATHY, ROTKOWITZ: ESM ESTIMATION USING APF

RMS Sampson error and running time of each scheme. The results are shown in Fig. 3.
The graphs indicate that the proposed scheme (especially when β = 4) achieves generally

lower error curves than the rest of the schemes except at a few locations (n = 8,200 in
the House pair and n = 20 in the Corridor pair). While the difference in performance at
these few locations is relatively small, it indicates that the proposed scheme may converge
to local minima like other iterative schemes. When all the correspondences are used for
estimation, all iterative schemes produce the same result unlike the five-point scheme which
gives higher errors in the House and Corridor sequences. GM remains the slowest scheme
and LM remains the fastest iterative scheme with the proposed scheme coming in between.

6 Concluding Remarks and Future Work
We have presented an iterative scheme for EsM estimation that augments the cost function
with quadratic penalties to integrate the EsM constraints into the optimization. The proposed
scheme can be used to minimize various types of cost functions as described in Section 4
although results were reported for the Sampson cost function only due to space limitation.
We have also described a strategy for updating the penalty parameter ck and have empiri-
cally demonstrated that the speed-robustness trade-off associated with selecting the speed of
growing ck. Experiments on synthetic and real data indicate the superiority of our scheme.

It is worth noting that we have attempted to use the Augmented Lagrangian Method
(ALM) which is generally faster than penalty-based methods but faced a difficulty due to the
fact that the set of EsM constraints are non-linearly dependent and outnumber the dimension
of the EsM. One possible space for improvement is finding/designing alternative sets of
constraints for EsMs that are less redundant than the set currently used in the paper and which
can effectively be integrated into ALM or APFs for EsM estimation. Another direction of
future work is investigating if APFs (or ALM) can be used effectively with other related
problems (such as trifocal tensor estimation [7]) and seeing if they could improve on the
state-of-the-art methods.
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