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Abstract	
Understanding	how	genetic	variation	leads	to	phenotypic	variation	is	a	fundamental	
goal	in	genetics.	One	of	the	challenges	of	this	goal	is	to	distinguish	variation	in	a	
genome	that	has	an	effect	on	phenotype	from	variation	that	has	no	effect.		One	way	
to	determine	if	a	genetic	variant	is	likely	to	have	a	phenotypic	effect	is	to	determine	
if	that	variant	affects	gene	regulation.	Presumably	through	their	effect	on	gene	
regulation	these	variants	affect	organismal	phenotypes.	Examining	heterozygous	
sites	in	a	genome	can	identify	the	presence	of	one	class	of	variants,	called	cis-
regulatory	variants.	In	the	absence	of	a	functional	variant,	sequencing	based	
measurements	of	gene	expression	should	show	no	bias	toward	one	allele.	The	
presence	of	allelic	bias	implies	that	functional	genetic	variation	affects	gene	
regulation.	One	key	issue	in	identifying	these	allele-specific	events	is	a	systematic	
bias	toward	the	reference	allele,	an	artifact	of	read	alignment	that	creates	false	
positive	allele-specific	expression	(ASE).	While	N	masking	is	one	popular	method	
used	to	reduce	reference	bias,	it	does	not	eliminate	all	sources	of	reference	bias.	We	
present	a	novel	metric,	the	homology	score,	to	characterize	Single	Nucleotide	
Polymorphisms	(SNPs)	based	on	the	homology	of	their	surrounding	genomic	region.	
When	combined	with	N-masking,	we	are	able	to	identify	and	filter	out	sources	of	
reference	bias	not	accounted	for	by	use	of	N-masking	alone.	In	general,	this	metric	
can	assist	in	removing	SNPs	likely	to	yield	false	positive	ASE.	
	
Introduction	
Determining	the	relationship	between	genetic	variation	and	phenotypic	variation	
has	been	a	long-standing	goal	of	evolutionary	and	medical	genetics.	Genetic	
variation	can	lead	to	and	increase	susceptibility	to	a	wide	variety	of	genetic	
disorders	[1-6].	Advancements	in	high	throughput	sequencing	have	made	whole-
genome	association	studies	feasible	generating	detailed	profiles	of	genetic	variation.	
This	has	led	to	identifying	functional	variants	underlying	phenotypic	differences	in	
diverse	populations	[7,	8].	While	many	variants	are	uncovered	by	high	throughput	
sequencing,	distinguishing	functional	variants	associated	with	loss	of	function	or	
disease	from	the	broader	background	of	variants	that	have	no	effect	remains	a	topic	
of	interest.	

Variation	in	gene	expression	can	modulate	phenotype.	Past	studies	have	
shown	that	gene	expression	is	heritable	and	can	be	mapped	as	a	quantitative	trait	
[9].	Furthermore,	gene	expression	regulated	by	allele-specific	effects,	which	can	
arise	from	events	such	as	genomic	imprinting	and	X	chromosome	inactivation,	is	
quite	common	throughout	the	genome	[10,	11].	One	way	to	study	phenotypic	effects	
of	genetic	variation	is	to	look	at	how	heterozygous	variants	affect	the	expression	of	a	
gene.	In	the	absence	of	a	functional	variant,	sequencing	based	measurements	will	
show	the	allele	from	each	parent	equally	expressed	at	a	1:1	ratio.	A	functional	



variant	is	identified	when	the	allele	from	one	parent	is	expressed	at	a	significantly	
higher	level	than	the	other	allele.	

An	important	aspect	of	allele-specific	analysis	is	the	reliable	quantification	of	
ASE	at	variant	sites.	ASE	is	one	metric	used	to	differentiate	regulatory	variants	but	
can	entail	many	false	positives	due	to	biases.	Appropriate	strategies	must	be	applied	
to	account	for	the	various	sources	of	bias	currently	known	to	affect	ASE	analysis	[12,	
13].	One	confounding	factor	is	the	presence	of	a	systematic	reference	bias	when	
aligning	to	a	single	reference	genome	[14].	Reference	bias	is	a	type	of	technical	bias	
first	introduced	when	mapping	sequencing	reads	to	a	genome.	Reads	containing	the	
reference	allele	are	more	likely	to	map	correctly	than	reads	containing	the	alternate	
allele.	Reads	containing	the	alternate	allele	at	SNP	loci	have	an	automatic	1	bp	
mismatch,	thereby,	increasing	the	chance	they	will	be	discarded	due	to	exceeding	a	
fixed	mismatch	threshold	by	the	alignment	tool.	Reference	bias	can	be	even	more	
pronounced	in	genomic	regions	where	multiple	SNPs	reside.	Reads	containing	
multiple	SNP	loci	can	result	in	multiple	mismatches	and	consequently	be	discarded	
for	exceeding	the	threshold.	

Several	strategies	have	been	proposed	to	reduce	reference	bias	[14-17].	
When	the	haplotype	of	both	parents	are	known,	mapping	reads	to	each	genome	and	
combining	results	is	a	superior	approach	[12].	Unfortunately,	phased	sequencing	is	
only	available	for	a	small	number	of	highly	sequenced	cell	lines	making	this	
approach	impractical	in	many	situations.	Therefore,	strategies	relying	on	mapping	
reads	to	a	single	genome	must	be	considered.	N-masking	known	SNP	locations	in	
the	genome	so	reads	from	both	alleles	have	an	equal	chance	of	mapping	is	one	
approach	used	however	it	does	not	eliminate	all	bias	[14].	We	present	a	metric	to	
identify	and	filter	SNPs	in	homologous	regions,	one	source	of	reference	bias	that	N	
masking	alone	does	not	resolve	[18].	When	applied	as	a	post-processing	step	to	N	
masking,	our	approach	is	able	to	detect	regions	of	reference	bias	not	resolved	by	N-
masking.		
	
Methods	
Our	simulation	study	was	conducted	using	the	human	genome	(GRCh37)	and	a	set	
of	highly	confident	genotype	SNP	calls	for	NA12878	from	the	National	Institute	of	
Standards	and	Technology	(NIST).	
	
SNP	Selection	
As	part	of	the	Genome	In	A	Bottle	(GIAB)	Project,	NIST	has	compiled	a	set	of	
1,671,942	highly	accurate	genotype	variant	calls	for	NA12878,	the	pilot	genome	for	
the	GIAB	Consortium	[19].	After	downloading	this	reference	material	(v2.19),	the	
following	filtering	steps	were	applied:	

1. Filter	out	SNPs	that	lie	within	10bp	of	an	indel		
2. Filter	for	variants	labeled	as	SNPs,	discard	all	others	
3. Filter	for	only	heterozygous	SNPs	
4. Filter	for	only	bi-allelic	SNPs	



After	filtering,	1,510,938	(~90%	of	the	original	set)	SNPs	were	left	over.	This	
filtered	set	represents	the	collection	of	SNPs	was	used	throughout	the	simulation	
study	unless	noted	otherwise.	
	
Read	Simulation	
Mason	was	used	to	simulate	RNA-seq	reads	at	each	SNP	loci	with	a	1:1	ratio	of	the	
reference	allele	and	alternate	allele	[20].	To	achieve	a	1:1	ratio	of	the	reference	
allele	and	alternate	allele	at	every	SNP	loci,	two	versions	of	the	human	genome	were	
created:	1)	a	genome	with	all	reference	alleles	at	SNP	loci	and	2)	a	genome	with	all	
alternate	alleles	at	SNP	loci.	Then	200,000,000	single-end	50	bp	reads	were	
simulated	from	each	genome	based	on	an	Illumina	sequencing	error	profile	and	a	
per-base	mismatch	probability	of	0.01.	Reads	from	each	genome	were	combined	
and	only	reads	overlapping	SNP	loci	(10,780,849	reads)	were	kept	for	testing.	
	
Read	Mapping	
After	N	masking	all	SNP	loci	in	the	reference	genome,	simulated	reads	were	mapped	
using	STAR,	allowing	up	to	2	mismatches	and	only	accepting	reads	that	mapped	
uniquely	to	the	reference	genome	[21].	Of	the	original	10,780,849	reads	simulated	
for	testing,	9,906,349	(91.89%)	mapped	successfully	under	these	alignment	
conditions.	

To	calculate	the	homology	score	for	each	SNP,	all	reads	were	mapped	to	the	
reference	genome	with	standalone	BLAT	using	parameters	recommended	by	the	
University	of	California	Santa	Cruz	to	replicate	web-based	BLAT	results	[22].	

	
To	reproduce	similar	BLAT	results,	use	the	following	parameters	when	running	
BLAT	
blat -stepSize=5 -maxDnaHits=2 -repMatch=2253 -minScore=0 -minIdentity=0 
	
	 As	part	of	this	study,	a	real-world	RNA-seq	dataset	of	GM12878	was	used.	
Reads	were	first	trimmed	with	ngsShort	using	parameters	recommended	by	the	
author	[23].	Reads	were	then	mapped	using	STAR,	allowing	up	to	2	mismatches	and	
only	accepting	reads	that	mapped	uniquely	to	the	reference	genome	[21].	Reads	
were	mapped	to	the	human	genome	without	masking	and	then	mapped	again	
against	a	genome	with	SNP	loci	N-masked.	
	
Homology	Score	
We	define	the	homology	score	as	follows:	
Let	s	denote	a	SNP	that	has	t	overlapping	reads	and	we	assume	that	each	read	has	
been	processed	by	BLAT.	The	read	homology	score	𝑚! 	for	a	given	read	r	is	defined	
as		

𝑏!! =	maximum	BLAT	score	for	read	r	
𝑏!! =	second	top	BLAT	score	for	read	r	

𝛿! =
𝑏!! − 𝑏!!
𝑏!!

	

𝑚! = 1− 𝛿! 	



Reads	that	have	only	one	BLAT	hit	(i.e.	a	unique	match	was	found)	are	assigned	a	
homology	score	of	0.	The	SNP	homology	score	is	computed	by	the	average	over	all	t	
reads	

𝐹! =
1
𝑡 𝑚!

!

!!!

	

A	SNP	with	a	score	of	0	will	represent	a	SNP	in	a	unique	region	of	the	genome.	By	
definition,	a	SNP	with	a	score	of	1	will	most	certainly	be	in	a	homologous	region	of	
the	genome	as	it	would	be	made	up	entirely	of	reads	that	had	exact	matches	
elsewhere	in	the	genome.	While	studies	involving	short	reads	may	require	a	
different	alignment	tool,	it	should	not	affect	the	calculation	of	the	SNP	homology	
score	as	the	conceptual	idea	remains:	to	quantify	the	homology	of	each	SNP	region	
based	on	the	reads	supporting	it.	
	
Results	&	Discussion	
N-masking	the	reference	genome	before	mapping	reads	is	a	popular	strategy	used	to	
eliminate	allelic	bias	in	allele-specific	expression	analysis.		By	masking	known	SNP	
loci,	reads	mapping	to	the	SNP	loci	that	contain	the	alternate	allele	are	not	at	a	
disadvantage	of	exceeding	sequence	mismatch	thresholds.	To	evaluate	how	well	N-
masking	affects	allelic	bias,	reads	were	simulated	across	SNP	loci	at	a	1:1	ratio	of	the	
reference	allele	and	alternate	allele.	A	deviation	from	this	ratio	would	be	the	result	
of	bias.	MASON	was	used	to	generate	RNA-seq	reads	because	it	accurately	models	
properties	of	RNA-seq	regularly	found	in	Illumina	sequencing	platforms	[20].	We	
confirmed	that	the	distribution	of	reads	matched	expectation	and	SNPs	had	a	varied	
range	of	coverage.	After	simulating	reads	at	all	SNP	loci,	reads	were	mapped	to	the	
reference	genome	where	730,118	of	1,591,769	(46%)	SNPs	(excluding	indels)	
showed	some	allele	imbalance	(i.e.	sites	without	an	exact	ratio	of	0.5).	After	N-
masking	the	reference	genome	at	SNP	loci	and	remapping	all	reads,	206,833	of	
1,556,921	(13%)	SNPs	(excluding	indels)	showed	allele	imbalance.	This	confirms	
prior	results	that	N-masking	can	eliminate	overall	reference	bias	(Fig	1).	

After	simulating	reads	at	all	SNP	loci	and	mapping	reads	to	a	N-masked	
genome,	many	biased	SNPs	still	remain.	80,872	out	of	1,511,294	(5%)	SNPs	that	
exhibited	allele	imbalance	showed	expression	of	just	one	allele.	The	remaining	SNPs	
showed	severe	to	modest	allele	imbalance	as	illustrated	in	Figure	2.	Our	results	
point	to	the	limitations	of	using	N-masking	to	remove	allelic	bias.	We	hypothesized	
that	a	significant	portion	of	the	allelic	bias	that	remains	after	N-masking	occurs	in	
homologous	regions.	While	reads	containing	either	allele	will	have	an	equal	chance	
to	map	correctly	to	a	N-masked	genome,	differentiating	the	correct	mapping	of	
reads	between	homologous	regions	becomes	ambiguous.	When	SNPs	occur	in	
homologous	regions	of	the	genome,	the	allele	at	the	SNP	loci	can	help	distinguish	
these	ambiguous	mappings.	Reads	containing	the	reference	allele	will	map	to	one	
homologous	SNP	region	while	reads	containing	the	alternate	allele	will	map	to	a	
different	homologous	SNP	region.	This	phenomenon	confounds	allele-specific	
studies	where	it	is	presumed	that	N-masking	will	not	affect	the	mapping	of	reads	
significantly.	Of	the	total	10,780,849	simulated	reads,	9,906,349	(91.9%)	reads	
mapped	uniquely	to	the	genome	with	no	masking	while	9,735,608	(90.3%)	reads	



mapped	uniquely	to	the	N-masked	genome.	Since	reads	may	map	ambiguously	in	
highly	homologous	regions,	SNP	loci	in	these	regions	are	not	amenable	to	ASE	
analysis.	Therefore	we	developed	a	homology	score	that	identifies	homologous	
regions	near	SNPs	de	novo	based	on	how	unique	the	read	alignment	around	SNPs	is.	
BLAT	hit	scores	provide	an	excellent	opportunity	to	exploit	when	quantifying	
unique	alignments.	

The	homology	score	was	significantly	higher	(p-value	<	2.2e-16,	Wilcoxon	
rank	sum)	for	SNPs	that	were	one-allele	biased	compared	to	those	that	showed	a	
mixed	bias	of	both	alleles	(Fig	3).	We	confirmed	that	this	pattern	is	not	dependent	
on	read	coverage.	Overall,	our	results	indicate	that	after	N-masking	5%	of	biased	
SNPs	are	located	in	highly	homologous	regions.	We	can	use	appropriate	homology	
score	thresholds	to	remove	biased	SNPs	(true	positives)	at	the	risk	of	removing	
SNPs	that	show	no	bias	(false	positives).	We	determined	the	receiver	operating	
characteristic	(ROC)	curve	and	precision-recall	(PR)	curve	along	a	range	of	
thresholds	for	the	homology	score.	Score	thresholds	that	remove	extremely	biased	
SNPs	but	do	not	remove	any	unbiased	SNPs	are	ideal	(Fig	4).	Weighing	both	
sensitivity	and	specificity	equally,	our	results	indicated	the	optimal	threshold	for	the	
homology	score	to	be	0.6.	While	in	practice	it	would	be	best	to	use	a	more	stringent	
threshold,	the	PR	curve	shows	a	greater	loss	in	recall	as	precision	rises	steadily.	

We	applied	our	homology	score	to	a	RNA-seq	data	set	from	the	
lymphoblastoid	cell	line	GM12878	(Coriell).	Mapping	reads	to	the	genome	with	no	
N-masking	resulted	in	the	discovery	of	44,853	SNPs.	41,329	(92%)	of	the	discovered	
SNPs	showed	some	degree	of	allele	imbalance.	After	N-masking	the	genome	and	
remapping	reads,	43,930	SNPs	were	identified.	40,456	(92%)	of	these	SNPs	showed	
some	degree	of	allele	imbalance	as	well.	Surprisingly	767	SNPs	were	identified	
when	mapping	reads	to	the	N-masked	genome	that	were	not	present	when	mapping	
reads	to	the	genome	with	no	N-masking.	This	supports	arguments	from	previous	
work	that	N-masking	negatively	impacts	the	ability	of	mapping	tools	to	align	reads.	
Applying	our	homology	score	approach	(using	the	optimal	threshold	based	on	
simulation	results)	removed	a	total	of	8,303	SNPs.	7,728	of	these	SNPs	showed	
significant	bias	while	575	SNPs	did	not.	

Our	results	show	a	significant	portion	of	SNPs	that	escape	N-masking	are	
extremely	biased	(expressing	only	one	allele)	and	exist	in	homologous	regions.	
Applying	a	homology	score	filter	as	a	post-processing	step	to	N-masking	helps	
eliminate	these	SNPs.	Although	the	effects	of	allelic	bias	diminish	as	read	length	
increases,	our	strategy	will	be	pertinent	in	experiments	when	longer	reads	are	
considered.	Extremely	biased	SNPs	display	effects	of	genomic	imprinting	that	are	
often	the	most	interesting.	In	the	future,	we	will	continue	to	study	other	sources	of	
bias	not	accounted	for	by	the	N-masking	approach	or	homology	score.	While	the	
homology	score	seeks	to	identify	extremely	biased	SNPs,	other	unknown	sources	
responsible	for	modestly-biased	SNPs	still	exist	(Fig	2).	
	
	
	
	
	



	
Figure	1	–	Elimination	of	reference	bias	by	N-masking:	Reads	were	simulated	at	SNP	loci	across	
the	entire	genome	at	a	1:1	ratio.	After	mapping	reads	to	an	unmodified	genome	and	an	N-masked	
version	of	the	genome,	allele	imbalance	was	calculated	for	each	SNP.	Mapping	reads	to	an	unmodified	
genome	led	to	46%	of	all	SNPs	showing	allele	imbalance.	By	N-masking	the	genome	first,	only	13%	of	
all	SNPs	show	allele	imbalance.	The	distribution	of	reference	bias	shows	that	N-masking	the	
reference	genome	before	mapping	reads	eliminates	overall	reference	bias.	
	
	
	



	
Figure	2	–	Density	plot	of	the	reference	ratio	in	allele-imbalanced	SNPs	after	N-masking:	After	
mapping	reads	to	an	N-masked	genome,	13%	of	all	SNPs	maintain	an	allele	imbalance	that	deviates	
from	the	simulated	1:1	ratio.	To	study	the	source	of	allelic	bias	after	mapping	reads	to	a	N-masked	
genome	we	looked	at	the	distribution	of	allelic	imbalanced	SNPs.	The	density	plot	illustrates	that	
allelic	imbalance	in	5%	of	these	SNPs	is	due	to	the	expression	of	a	single	allele	while	the	other	allele-
imbalanced	SNPs	show	modest	bias.	
	
	
	



	
Figure	3	–	Score	distribution	of	highly	biased	SNP:	SNPs	where	one	allele	was	expressed	tended	to	
have	a	higher	homology	score	than	SNPs	where	both	alleles	were	expressed.	A	Wilcoxon	rank	sum	
test	confirmed	the	distribution	of	the	homology	scores	for	SNPs	where	a	single	allele	is	expressed	is	
significantly	higher	than	SNPs	where	both	alleles	are	expressed	(p-value	<	2.2e-16).	This	indicates	
that	extremely	biased	SNPs	expressing	a	single	allele	are	located	in	regions	of	the	genome	identified	
as	highly	homologous.	
	
	

	
Figure	4	–	ROC	curve	and	PR	curve:	The	ROC	curve	has	an	area	under	the	curve	(AUC)	of	0.81.	
Overall,	there	are	gains	in	the	true	positive	rate	(TPR)	up	to	the	optimal	threshold,	(>	73%)),	trading	
off	a	false	positive	rate	(FPR)	up	until	about	23%	FPR.	After	an	FPR	of	23%,	we	do	not	see	significant	
gains	in	TPR	for	a	tradeoff	of	increased	FPR.	[24]	
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