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Abstract

Movement data is high-dimensional but often redundant, meaning there is certainly
a lower dimensional subspace that spans most of the body configurations within an
action performance. We propose that one such representation can be achieved through
a decomposition method that explores the existence of key configurations and temporal
correlations of those configurations that are typical of action matrices. The approach
is compatible with computational models of motor synergies based on matrix factor-
izations, and it builds upon a method that was earlier proposed in the context of bi-
ological motion perception. Our experiments show that vertical jump trials collected
from children and young adults can be consistently reconstructed from the resulting
representation. We also observe that a subset of that same representation suggests dif-
ferences among populations of jumpers based on their trials, which serves to illustrate
the potential of the method as a tool to analyze both actions and actors.

1 Introduction

Motion capture technology is getting cheaper, more diverse and achieving higher through-
put. While raw movement data is very high-dimensional by nature, it is also highly redun-
dant, both at the level of body configurations (e.g. limb positions, postures or joint angles)
and the occurrences of such configurations along the timeline of the action; in other words:
in both space and time. Therefore, to allow for meaningful computational exploration of
hidden patterns of activity, these data must first be shaped into some lower dimensional
representation to be manipulated later.

Along these lines, we propose that a suitable compact representation can be obtained
by decomposing an action matrix of size T (time instants) × J (body configurations) with
a method that consists of (1) finding a vector space corresponding to key configurations
and (2) fitting a mixture model to the projections of the matrix onto each of the individ-
ual vectors found, that is, imposing a parametric model to the temporal correlations of
each of the body configurations represented by the vectors. Throughout the document,
we refer to the computed vector space as the spatial basis of the action and we call the
parameter set of the mixture model the spatio-temporal representation. The approach was
tested on optical motion capture data of adults, typically developing children and children
with Developmental Coordination Disorder (DCD), all performing vertical jumps. Results
suggested it is indeed an adequate action representation for it was observed to allow for
proper reconstruction of the jumps and also helped in the inspection of both similarities
and differences among populations of jumpers based on their trial distributions.

Our work is related to research in computational models of motor synergies, more specif-
ically the models involving matrix factorizations. The method we describe builds upon an
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existent computational model of biological motion perception, proposed by vision psycholo-
gists. In the next section, we sketch some of the ideas behind these two related disciplines
– one motor, another perceptual – so that the scope of the work is properly situated. In
sequence, we formalize the computation of spatial and spatio-temporal representations and
present the experiments with the jump data set, along with our main findings.

2 Related work: compact representations in the motor and
visual spaces

Synergies, motor programs or action primitives are only a few of the many ways to denote
a hypothetical set of pre-existing modules of effector activation that would be combined
by the central nervous system to produce action. Many believe this is the way the brain
cuts down dimensionality when controlling and coordinating multiple degrees of freedom
in space and time, the so called “Degrees of freedom (DOF) problem” and it came out of
the first round of investigations of Bernstein’s work in control and coordination, as once
posed by Turvey [1]. This problem has been recently revisited by Latash et al. [2, 3] who
discuss the related “principle of abundance”, which refers to the fact that a task demands
less degrees of freedom than what is available to be controlled. See Flash et al. [4] for a
very interesting summary of findings around the nature of motor primitives at behavioral,
muscle, neural, and computational levels.

Previous electrophysiological experiments in spinalized animals have indeed presented
strong evidence supporting the existence of basic modules of movement that would be addi-
tively combined to produce behavior [6]. These modules also seem to be connected to how
the same activities are perceived, which is referred by Turvey [1] as “simultaneous organi-
zation of afferentiation and efferentiation”. The vast applicability of modeling movement
signals based on a compact set of primitives makes the quest for motor synergies an active
research topic across many different communities, namely cognitive and humanoid robotics,
kinesiology and movement psychology. Theories around the nature of synergies have been
proposed in terms of spinal force-fields [6, 7, 8], time-varying synergies of muscle forces
(TVMS) [9, 10, 11], joint-angle configurations [14], and uncontrolled manifolds [2, 3, 5],
among others.

Assuming that these action modules actually exist, the way they would be obtained from
collected data is still a mystery. The SB-ST decomposition method that will be covered in
the next section has aspects in common with attempts to look for synergies based on matrix
factorizations, some of which have been experimented and reported successful in both artifi-
cial and real motor data, at least in terms of reconstruction power and consistency of factors
and coefficients [16]. Ivanenko et al. [12] tried different factorization methods on EMG data
from 8 subjects performing walking actions and walking plus voluntary behaviors, such as
kicking a ball or overcoming an obstacle along the way, and found factors to be consistent
for the different methods. When they inspected the spatio-temporal profiles of factors (they
call it activation components) in ascending order of peak activation time, they realized that
all voluntary behaviors agreed upon the same five first components, which happened to be
very similar to the first five components of walking. Later, Ivanenko, Popelle et al. [13] pre-
sented a spatio-temporal map of 32 muscles along the rostrocaudal axis of the spinal cord
(as an indirect measure of the firing of spinal α-motorneurons innervating those muscles)
for a single walking cycle, and again noted five factors with main peaks that coincided with
major kinematic and kinetic events of walking. But the main finding of the two accounts
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was a sixth profile that was distinct among all voluntary behaviors, with main peaks at
different stages of the cycle. Authors then proposed an additive model that coordinates
locomotion and voluntary actions by the superimposition of the discovered extra activation
program onto the five walking programs. Ivanenko, Popelle et al. [13] observed that activa-
tion programs should comprise a single Gaussian each, because when single Gaussians with
standard deviations fixed at 6% of the cycle duration were fit to the activation programs of
each of the factors, they were shown to account for about 90% of the data variance. They
later concluded: “It appears that the question of muscle activation during locomotion can
be divided into two parts, the timing of activation and the specification of which muscles
to activate. In fact the necessity for such a dual motor pattern representation has given
rise to a nontraditional definition of muscle synergies: a time-varying muscle synergy”.
In other words, both the muscle ensembles (which we extrapolate here to the consequent
body configurations and refer to as spatial basis) and their time profiles (we refer to as
spatio-temporal basis, since these are profiles linked to a particular body configuration)
are parametrized. This distinction is critical when one wants to analyze spatio-temporal
sensitive movement phenomena such as coordination disorders. SB-ST also shares common
aspects with the referred time-varying muscle synergy (TVMS) model, as will be further
discussed.

Compact representations of movement have also been pursued by vision psychologists
while trying to computationally model the visual phenomenon referred to as biological mo-
tion perception – a term coined to express the ability of humans to perceive moving dots
from point-light displays as coherent articulated rigid bodies that give rise to the perception
of classes of activities [17, 18, 19]. Of particular relevance, Troje [20] has offered a com-
putational method that produces walking patterns and it is able to discriminate between
male and female walks from point-light displays coming from 3-D motion capture positional
data. He also breaks up the action analysis into spatial and spatio-temporal representa-
tions, although he does not actually use this terminology or address the decomposition in
a more general way. The spatial basis described in this paper is analogous to his eigen-
postures, which represented the 4 first principal components of a single-walker data matrix
of dimension T × 3J , with T corresponding to the length of the walk trial (rows) and 3J
being the joint-{x, y, z} coordinates (columns). He modeled the temporal occurrences of
the eigenpostures with a family of sine functions, for which he determined the 4 fundamen-
tal frequencies and the relative phases of components 2, 3 and 4 with respect to the first.
His sine functions correspond to the basis functions in the spatio-temporal representation
presented here.

Troje’s work illustrates that a lower dimensional generative action model is able to both
produce the action efficiently and discriminate among performing actors, and his results
provided us with the necessary inspiration to re-address his ideas in a more generally ap-
plicable model. His choice of modeling the temporal activation of spatial basis vectors as
a sum of sinusoids is more suitable to pick patterns that appear throughout the whole
timeline of the action but will miss localized events that can reveal coordination differences
across populations of performers. Instead, we approach the problem as a matter of fitting a
mixture model to the time series and we foster the use of a powerful non-linear least-squares
regression tool, Variable Projection or VARPRO [21], which has been used in many different
scenarios after almost 40 years of its existence [22], but (to the best of our knowledge) it has
not been applied in the context of movement data decomposition. The idea of fitting a mix-
ture model to the temporal activations is consistent with the locomotory model of Ivanenko,
Popelle et al. although they suggest a single Gaussian-shaped activation component per
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Figure 1: In the example above, J-dimensional spatial basis vector vi encodes a linear
combination of joint angles θ1, θ2 and θ3 computed with SVD, as shown by the leftmost
figure. The projection zi = Y vi of action matrix Y T×J onto vi results into an often smooth
(therefore differentiable) temporal series of correlations that represents the activity of that
particular spatial arrangement (posture) along the timeline of the action (center figure). We
use VARPRO to produce a compact parametric representation for this temporal behavior
by fitting a mixture of z̃i = Φτici to zi (right figure) which results in parameter vectors
τ i = {τi,1, τi,2, τi,3} and ci = {ci,1, ci,2, ci,3}. An action matrix is therefore fully characterized
by each spatial basis vector vi and corresponding set of spatio-temporal parameter vectors
τ i and ci. See text for more details.

factor-cycle. For the particular case of vertical jumps, we have observed these activations to
reveal more than one mode, so a mixture appeared more appropriate and conceptually more
general. Besides, even though we will present the decomposition based on Gaussians, the
VARPRO framework can accommodate other functions. Figure 1 summarizes the method,
which is covered in the next section.

3 SB-ST action decomposition

3.1 Computing a spatial basis and spatio-temporal representations

Let Y T×J be a multi-dimensional action signal, for example, a T -length sequence of J-
joint angle configurations. The k-th order approximation of that signal by SVD, in matrix
notation is:

Ŷ T×J = z1v
>
1 + z2v

>
2 + . . .+ zkv

>
k ,

where vi is one of the top k right singular vectors of Y , therefore spanning the column
(postural) space of that matrix, and projection zi = Y vi corresponds to the one-dimensional
time series that expresses the correlations of the particular spatial configuration represented
by vi along the timeline of the action1.

For each i, let {Φ(τi,j , t) : j = 1 . . .N i} be a family of N i Gaussians. Also, let the mean
vector τ i = {τi,1, τi,2 . . . τi,N i} be the only relevant set of parameters, i.e. let the Gaussian
functions have fixed standard deviations. Consider Φτi to be the corresponding T ×N i

1Note that, for right singular vector vi, Y vi = σiui, with σi being the i-th singular value and ui the i-th
left singular vector. We chose to use Y vi rather than ui through the text just to emphasize that vector zi

expresses a time series of correlations between the data matrix Y and the particular spatial configuration
vi.
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Figure 2: Approximating Y (t) as a linear combination of spatial basis vectors v1,v2 . . . vk
(dashed lines), as in Equation 1. Coefficients z̃i(t) of each vector vi are the product of the
t-th time row of its spatio-temporal matrix Φτi and respective linear parameter vector ci
(solid lines).

matrix such that each function is sampled at T instants and it becomes a column of that
matrix. We will now model zi by fitting a linear combination of the columns of Φτi with
linear parameters ci = {ci,1, ci,2 . . . ci,N i}:

Ỹ T×J = (Φτ1c1)︸ ︷︷ ︸
z̃1

v>1 + (Φτ2c2)︸ ︷︷ ︸
z̃2

v>2 + . . .+ (Φτk
ck)︸ ︷︷ ︸

z̃k

v>k ,

and we have z̃i = Φτici. Equivalently, the posture produced by the model at time t is:

Ỹ (t) = z̃1(t)v
>
1 + z̃2(t)v

>
2 + . . .+ z̃k(t)v

>
k , (1)

where z̃i(t) = ci,1Φ(τi,1, t) + ci,2Φ(τi,2, t) + . . .+ ci,N iΦ(τi,N i , t). The schema in Figure 2
illustrates how a posture Ỹ (t) is generated.

Vector vi corresponds to the i-th spatial basis (SB) vector of action matrix Y or SB-
i. Basis functions Φ(τi,j , t) (and, equivalently, its matrix version Φτi) together with the
mean vector τ i and the linear parameter vector ci constitute what we call the i-th spatio-
temporal representation (ST) of Y or ST-i. We are now left with the task of solving for
ST-i parameters τ i and ci.

3.2 Solving for ST-i parameters with VARPRO

Because Φ(τi,j , t) was chosen to be a family of single-parameter Gaussians, this problem
turns out to be a separable least-squares regression problem, which allows us to solve for
τ i and ci using variable projection (VARPRO) proposed in the early 1970’s by Golub &
Pereira [21]. The method exploits the linear substructure of this particular case of nonlinear
least squares (NLLS) regression: if you fix the set of non-linear parameters τ i, the problem
turns out to be linear in ci and can be solved for the latter using linear least squares (LLS)
technology. In other words, parameter ci becomes a function of parameters τ i and so,
instead of solving:

min
τ i,ci
||zi − z̃i(τ i, ci)||22,

we solve:
min
τ i

||zi − z̃i(ci(τ i))||22.
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Note that this is now a less parametrized problem, a clear advantage of the VARPRO
framework. In the LLS stage, the pseudo-inverse solution for ci is:

c̃i = [Φτi ]
†zi. (2)

Recall that zi = Y vi is computed by projecting data matrix Y onto spatial basis vector
vi computed with SVD, and vector z̃i is the current VARPRO approximation. The solution
can be expressed in terms of the truncated SVD of Φτi :

c̃i = V Σ̃−1U>zi. (3)

The LLS solution is then directly embedded in the calculation of the Jacobian of
z̃i(ci(τ i)) for the NLLS part of the optimization. As in [23], the Jacobian can be expressed
as a sum of two matrices:

J = −(A+B), (4)

where each of their N i columns are:

aj = Dj c̃i −U(U>(Dj c̃i)),

bj = U(Σ−1(V >(D>j r))). (5)

Here, Dj is a matrix with zeros at all columns but j, which will have the partial
derivatives of the j-th Gaussian Φ(τi,j , t) (or the j-th column of matrix Φτi) w.r.t. its mean
τi,j , evaluated at all time instants t.

Matrices U , Σ̃−1 and V come from the truncated SVD of Φτi as in Equation 2. Vector
r is the residual zi − z̃i. Operations were grouped so that only matrix-vector product
multiplications are required, as in O’Leary & Rust [23], who also propose modifications
to the way both the partial derivatives and the Jacobian are stored to exploit sparseness.
The presented SB-ST decomposition and our VARPRO implementation are summarized
in Algorithms 1 and 2, respectively. MATLAB® sample source codes are attached to this
submission as supplemental materials.

3.3 Relationship with time-varying muscle synergies model

Time-varying muscle synergies (TVMS) is a compositional model that produces an action
as a linear combination of asynchronous, short-length time series of muscle assemblies. It
was proposed by d’Avella et al. [9, 10, 11] to characterize relative muscle coordination in
both space and time, after their findings from frog natural behavior data. It is similar to
SB-ST, in it also approximates the temporal evolution of a multi-dimensional action vector
with k components, which according to our notation would be:

Ŷ (t) = z1v1(t− τ1)> + z2v2(t− τ2)> + . . .+ zkvk(t− τk)>, (6)

where vi(t− τi) is a J-dimensional vector that derives from one of N synergy matrices V i

of dimension J(muscles) × Q(discrete time units). It is equal to the null vector whenever
t − τi < 0 (t is a point in time earlier than when synergy V i is supposed to be active) or
t− τi ≥ Ti (t is past V i’s activation).

The latest edition of TVMS [11] is a more elaborated version of the previous two [9, 10],
and it determines vi(t−τi) and zi through a non-negative factorization of Y similar to what
was also proposed in [24]. They find delays τi by using a greedy technique that resembles
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Algorithm 1 : [vi, ci, τ i, Ỹ ] = SB ST decomposition(Y , k, N i)

Compute [U,Σ,V] = SVD of Y
for i = 1 to the first k columns vi of V (SB-i vectors) do

Form zi = Y vi
Form approximation z̃i by:
1. finding optimal τ i with a NLLS solver that calls [r, c̃i, J ] = VARPRO loop(τ i, zi),
with τ i initialized at random (the solver should minimize the r2 using Jacobian J),
2. computing matrix (family of functions) Φτi from optimal τ i and fixed standard
deviations,
3. letting ci = c̃i and making z̃i = Φτici (ST-i vectors).
Update approximation Ỹ T×J ← Ỹ T×J + z̃iv

>
i

end for
Return vi, ci, τ i (i = 1 . . . k) and Ỹ

Algorithm 2 : [r, c̃i, J ] = VARPRO loop(τ i, zi)

Compute matrix (family of functions) Φτi from τ i and fixed standard deviations
Compute truncated [U,Σ,V] = SVD of Φτi

Make c̃i = V Σ̃−1U>zi
Compute current approximation z̃i = Φτi c̃i and residual (or error) r = zi − z̃i
for j = 1 to N i Gaussians of Φτi do

Form matrix with partial derivatives Dj =
∂Φ(τi,j ,t)
∂τi,j

(see last paragraph of Section 3.2)

Make aj = Dj c̃i −U(U>(Dj c̃i)) and bj = U(Σ−1(V >(D>j r)))
Add aj and bj and form the j-th column of Jacobian J as in Equation 4

end for
Return r, c̃i and J

matching pursuit. Please refer to the papers for further details. Figure 7 shows the resulting
factors of a sample decomposition.

In our context, TVMS spatio-temporal synergy vectors vi(t−τi) would each correspond
to a time-sequence of postures occurring only at instant (time-shift) τi, and scaled by
constant magnitude zi. In contrast, our spatial basis vectors vi are individual postures
that can occur at anytime throughout the trial, but with time-varying scaling magnitudes
instead (recall from Equation 1).

4 Experiments and results

The goals of our experiments were (1) to validate the decomposition approach, by checking
whether SB-ST parameters would allow for successful reconstruction of movements per-
formed by different people; (2) to illustrate how the parameters of the model can be used
to provide important insights related to both the action and actors involved. Although
any kind of action could have been chosen, here we decided to look at vertical jumps, a
non-trivial behavior that requires strength, coordination and balance.
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Figure 3: From left to right: subject setup in our lab, vertical jump experiment and inter-
segmental joint angles used in the experiments. Second and third pictures were adapted
from [25].

4.1 Experiment setup and data description

Figure 3 shows the task our subjects performed: participants were instructed to jump
vertically as high as possible trying to reach for a visual target. Written informed consent
was obtained from all subjects/parents/legal representatives after a careful explanation of
the testing procedures.

Each vertical jump resulted in a data matrix Y T×J , of which a single row corresponds
to a joint configuration or posture at a certain time. Collected jump trial matrices have
T ≈ 80 rows (about 0.8 seconds) and J = 6 columns encoding six joints: left and right
hips, left and right knees plus left and right ankles. We only used the flexion/extension
intersegmental joint angles. The data set described in this section has a total of 358 vertical
jumps collected with optical motion capture technology. These jumps come from 4 different
populations, totalizing 37 participants: 9 typically developing female children (98 jumps),
6 adult females (61 jumps), 10 typically developing male children (88 jumps), 5 adult males
(52 jumps) and 7 children diagnosed with DCD [25] (59 jumps). Children were in the broad
age range of 6 to 14 years old. Adults were all in their early 20’s. Trials were manually
segmented by an expert in the vertical jump movement, so that they span the same postural
range: all poses captured within the initial and final peak knee flexions, as also in Figure 3.
The raw data is attached in BVH (Biovision Hierarchy) format as part of the supplemental
contents of this paper.

4.2 Vertical jump reconstruction

In our reconstruction experiments, all jump trials were decomposed into a spatial basis of 3
vectors SB-i (i = {1, 2, 3}) with varying (depending on the particular test being conducted)
N i pairs of basis functions/ST parameters τ i and ci. In particular, standard deviations
were fixed as σi = {1/(2 · 1), 1/(2 · 2) . . . 1/(2 ·N i)} × T . Note that we do not need to
require all N i to be the same, but we opted to do so in our experiments to simplify the
analysis. We refer to these values as N from now on.

Prior to parameter estimation, each zi was normalized into a unit vector. For the
main loop of VARPRO, we used MATLAB® lsqnonlin() with τ i subject to being within
[0, 1], while no constraints were applied to ci. Figure 4 shows the statistics of the coefficients
of determination R2 for each individual joint series: the method was able to successfully
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Figure 4: Mean ± std coefficients of determination R2 per joint series approximation over
all jumps in our dataset, grouped by population. Overall high average coefficients of deter-
mination (≥0.95) reflect the successful reconstruction ability of the decomposition.

reconstruct all jumps in the dataset for all 5 populations considered, with average R2 not
less than 0.95. We also looked at how the reconstruction results are affected by the number
of basis functions/pairs of ST parameters N . Figure 5 presents R2 scores averaged by joints
and populations versus N = {2 ... 20}(blue solid bar plots). For the given data, believe
the best trade-off between dimensionality and quality of reconstruction was achieved when
4 ≤ N ≤8.

4.2.1 Comparative reconstruction performance

Comparing with Troje-inspired decomposition

We have compared our VARPRO-based, Gaussian mixture decomposition of zi with a
Troje-inspired2/Fourier-based decomposition, by inspecting coefficients of determination
versus number of basis functions utilized. For a certain N , the corresponding Fourier
decomposition consisted in selecting the top-N responding harmonics (via FFT of zi) and
using only these harmonics to reconstruct the original zi (via IFFT). Note that, given a
certain N , the number of parameters needed to reconstruct zi is the same in both cases
making these methods comparable: SB-ST fits a mixture of N Gaussians of fixed scale,
therefore resulting in N pairs τi, ci (ST-i parameters) while Troje’s uses pairs of N selected
Fourier harmonics along with respective responses.

The bottom plot of Fig. 5 clearly shows that our fitted mixture (blue) outperformed
Troje-inspired approximation (red) of zi from 4 ≤ N ≤ 7, which could be considered the
range with the best trade-off between the number of parameters used versus reconstruction
error (note the change of slope in both methods when N moves from 3 to 4, as well as
the dramatic decrease in R2 cross-trial variances). Figure 6 also shows superior qualitative
performance: for the same N = 8, our method fits the local details of zi better than its
competitor.

VARPRO regression

To assess VARPRO regression in particular, we replaced it with the default interior-point
(IP) implementation of MATLAB® fmincon() and compared their reconstruction perfor-

2In his work, Troje [20] fits the temporal series of each of his eigenpostures with a single fundamental
harmonic, which he finds sufficient to model the walking action. A natural extension to non-periodic actions
as jumps is to select as many harmonics as necessary to obtain good approximations. This is what we call
a Troje-inspired decomposition here.
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Figure 5: R2 is plotted against the number N of basis functions/pairs of ST parameters, for
different decomposition methods: Troje-inspired (dashed red), SB-ST decomposition with
VARPRO regression (solid blue) and SB-ST with interior-point (IP) regression (dashed-
green). Each point in the plot corresponds to the mean coefficient of determination R2 ±
std. Here, the coefficient of determination of a trial is itself the average of the coefficients
of determination across all joints, since a jump trial is a multi-dimensional time series. A
high mean R2 (good reconstruction) together with a low std (good generalization across
trials/populations) reveal 4 ≤ N ≤ 8 to be an adequate trade-off, as can be noted from the
bottom plot. See text for more details.

mances. As with VARPRO, τ i was constrained to the [0, 1] interval. In other words, we
kept the same SB-ST decomposition framework, but adopted a different regression method
to estimate τi, ci (ST-i parameters).

The top plot in Figure 5 shows that, in terms of R2, VARPRO is outperformed by
IP (red) when N < 4 and produced virtually as good average reconstruction errors as IP
otherwise. However, both methods are only practically acceptable when N ≥ 4, that is,
when the cross-trial variances in R2 drop to values that are relatively low. Within the range
of 4 ≤ N ≤ 7, the two performances were almost equivalent, as depicted by the bottom
graph of Fig. 5. IP does slightly better when N = 4, which is the first time when both
methods’ R2 exceed 0.95. Qualitatively, both VARPRO and IP behaved very well, as can be
seen from the fits of the sample jump in Figure 6, but again IP did a little better. However,
it is important to note that VARPRO is much faster than IP: for instance, when N = 8,
VARPRO’s per-trial average ± std execution time was 0.34±0.16 s, while IP took 7.65±0.61
s. The testing platform was an AMD Phenom™ 9750 quad-core 2.41 GHz processor, with
8GB of RAM, running 64-bit Microsoft® Windows XP Professional Version 2003/Service
Pack 2.
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Figure 6: Fits of z1, z2 and z3 for one of the jump trials. Actual data are shown as black
lines, and the results of Troje-inspired, VARPRO and IP approximations appear as red,
blue and green lines, respectively.

Comparing with the TVMS model

As shown in Section 3.3, TVMS is a decomposition approach that shares similarities with
the method described in this account, so we looked at how it would perform on our data:
Figure 7 (a) shows the result of factoring one of our jumps into N = 3 synergies of length
Q = 60 time units: most of the movement loads on a single synergy matrix V 2, with
hips-ankles and knees acting as agonists and antagonists, respectively. As will be seen
in Section 4.3, this is consistent with the statistics of our spatial basis SB-1 coefficients.
Moreover, Figure 7 (b) reveals that the second synergy seems to cover the central portion
of the jump motion (note time-shifts z2 and z3 in Figure 7 (b)), from some point in between
postures (I) or (II) and posture (IV) of Figure 3. The other two synergies took care of
initial and final sections of the motion.

We found worth mention that it was not always the case that we were able to get
satisfactory reconstruction of our data using TVMS. Figure 7 (c) shows a typical problem:
a significant part of the signal (top) is not covered by the resulting synergies/parameters,
resulting in a very low coefficient of determination i. e. high reconstruction error. As an
effort to rule out the cause of the problem to be the poor selection of N and Q, we ran
TVMS on the whole dataset using different combinations of these quantities, and the poor
performance still persisted, as illustrated by the mean and standard deviations of Figure 7
(d). As a result, we discontinued the analysis based on that method.

We then conjecture that the reconstruction problems of TVMS on our data should result
from not using more than a single trial to compute synergies and other parameters. As a
matter of fact, D’Avella et al. designed TVMS under the assumption that there exists
latent repertoires of synergies plus control and coordination parameters that span both
multiple behaviors [10] and others that are behavior-dependent [11], and thus enforced
their optimization to obtain factors that are faithful to these assumptions, in other words,
synergies and parameters are supposed to be obtained from minimizing reconstruction errors
across several trials (or episodes as worded by its authors) of one of more behaviors, meaning
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Figure 7: Single-trial based time-varying muscle synergies (TVMS) decomposition adapted
to our jump data. It is a non-negative factorization that breaks up the trial into (a) a block
synergy matrix [V 1|V 2| ... |V N ] and (b) a sparse matrix that shifts and scale each i-th
synergy by τi and zi, respectively (dark blue corresponds to zero). Matrices V i are of size
J (joints) by Q (time length), and their product recreates the input trial (see Equation 6
for the time-indexed notation). Note from (a) that most of the movement loads on V 2,
with agonist hips and ankles and antagonist knees (dashed line). Although the sample
reconstruction based on the two matrices here displayed produced a near-perfect input
signal such as the one at the top of figure (c), in many cases TVMS failed to recreate the
jump trials and produced distorted results such as the one at the bottom of the same figure,
where certain portions of the signal are zeroed (note the black arrow). This type of error was
widely observed through the whole dataset for different values of N and Q attempted, and
clearly reflected on the computed (d) means and standard deviations of absolute coefficients
of determination. See text for further discussion.
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Figure 8: Mean ± std coefficients of vectors SB-1 (top-left), SB-2 (top-right) and SB-3
(bottom-left). At the bottom right, note that the mean ± std explained variances per vector
are consistent across all populations in the dataset. The distribution of SB-1 coefficients
reveals the major component of the vertical jump, apparently common to all populations,
which can be noted by the overlapping means and low standard deviations. See text for
more details.

several trials should be expected to be available to TVMS. Our study, on the other hand, is
not assuming the existence of common factors, but rather trying to observe if that should be
the case by looking at the joint behavior of factors that come out of individual trials. Hence,
to allow for comparisons between TVMS and our SB-ST, we had to run the former on a
single-trial basis. The corresponding MATLAB® source code of our TVMS implementation
is supplied as part of supplemental materials.

4.3 Looking at jumps and jumpers based on the model parameters

From Figure 8, note that spatial basis SB-1 coefficient statistics suggest that over 50% of
the (trial-averaged) explained variances in the vertical jump consists of 2 main groups of
rotations: hips and ankles (top coefficient values in the range of 0.4 to 0.6) together with knee
rotations (bottom coefficients within -0.6 to -0.4). Moreover, overlapping lines show these
distributions seem to generalize across all populations examined. In fact, SB-1 works by
clustering leg joints into the two existing agonist and antagonist motions, which is also clear
from the picture. The same figure also reveals that SB-2 coefficients are almost zero-centered
and have high variances, in special, left and right ankle coefficients. SB-3 coefficients are also
mostly zero-centered, have even higher variances than SB-2 coefficients and less agreement
across populations. With average SB-2 and SB-3 coefficients close to zero and no clear
interpretation in the context of the jump action, the remaining discussion will focus only
on spatio-temporal aspects of SB-1, that is, the statistics of ST-1’s τ 1 = {τ1,1 . . . τ1,N}
and c1 = {c1,1 . . . c1,N} estimated by VARPRO.

We looked at parameter distributions resulting from decompositions with N = 4 and
N = 5 (see Gaussians G1 . . . G5 on the left of Figure 9) to note that when the number of
basis function changes, so does the distribution of parameters, thus the observed differences
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Figure 9: ST-1 parameter statistics for each specific developmental population in our
dataset. To the left, the Gaussian basis functions G1 . . . G5 of ST-1. Following, each
row displays the distributions of τ i (coordination) and ci (control) parameters for its cor-
responding Gaussian on the left. Parameters were computed for N = 4 and N = 5 were
placed side-by-side to show that distributions may vary with the choice of N . Blue, red
and black curves refer to data from typically developing children (TD), children with Devel-
opment Coordination Disorder (DCD) and young adults (AD), respectively. Distributions
were approximated with MATLAB® ksdensity() function, which was set to sample the
data range at 50 points and to use a Gaussian kernel for smoothing. Bandwidths were
automatically computed by that function, and varied across parameter distributions. To
illustrate the extent to which these distributions agreed between populations, we labeled
some of the plots with � (AD, TD and DCD agree on both coordination and control),
upper-left 4 (anywhere AD and TD agree), � (DCD agrees with AD and TD on coordi-
nation, but not control) and F (DCD completely disagrees with AD and TD). See text for
further discussion.
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will also depend on the choice of N . The level to which this variation occur will be a conse-
quence of the selection of the basis functions and/or the range of scale parameters utilized
(i. e. standard deviations, when using Gaussian functions). Here, we are not assuming the
existence of a right decomposition, but instead arguing that many decompositions are pos-
sible, and some may be useful for the movement analyst to uncover interesting differential
features.

After smoothing all distributions with the MATLAB® ksdensity() kernel density
estimator function, we looked at how jumpers of different developmental stages agreed in
terms of the distributions of their ST-1 parameters. For simplicity, from now on we will
call τ 1 and c1 coordination and control parameters respectively, because the former places
each of the Gaussians along the timeline, so they match the local features of the spatial-
temporal profile of posture SB-1, while the latter scales these Gaussians in accordance
to the intensities of SB-1 activation. To be considered to agree, two distributions should
have either similar shape or approximately the same peak abscissa, on the basis of visual
inspection.

As seen from Figure 9, the frequent agreements between AD and TD (4) and simulta-
neous partial (�) and full (F) disagreements of these populations with DCD (mostly when
N = 5) suggest these parameters are capable of discriminating these actors. Although
qualitative interpretation of these parameters is not easy at first glance, i. e. it is hard to
tell what is the meaning of fitting G4 to part of SB-1’s spatio-temporal profile, interesting
insights can still be derived. Let us consider the situations when coordination parameters
could peak at approximately the same points of the timeline, have similar shape but differ
in the distribution of control parameters: from Figure 9, when N = 5, the 3 populations
seem to be recruiting G4 early in the timeline, since τ1,4 appears to be consistent for TD,
AD and DCD. However, c1,4 distributions do not agree among the 3 populations, which
can be noted by the different peaks and shapes. We can then conjecture, based on the cho-
sen decomposition, that there could be inter-population discrepancies related to the spatial
configuration encoded by SB-1 taking place somewhat early in the course of the vertical
jump, perhaps between the onset of the motion and time of takeoff (Figure 3). To discern
what exactly these differences mean would require a more thorough analysis, and surpasses
the scope of this work. Still, we believe that the framework outlined here would be able to
assist in such investigation.

5 Conclusions

This paper describes the SB-ST decomposition method, which breaks the Y T×J action
data matrix into spatial and spatio-temporal representations. Relevant spatial configura-
tions of joints are identified by SVD and form a spatial basis (SB) for the action. Temporal
correlation series of SB vectors, that is, the projection of the data matrix onto SB, are
approximated by combinations of Gaussians through a non-linear least-squares regression
method, VARPRO. These functions form the basis functions of the spatio-temporal repre-
sentation (ST) of the action.

Concerning dimensionality, the action matrix is fully described by k (J-dimensional)
SB vectors v1,v2 . . . vk plus another 2k (N i-dimensional) ST vectors τ 1, τ 2 . . . τ k and
c1, c2 . . . ck, totalizing kJ + 2k

∑k
i=1N i parameters. Although the number of parameters

increases linearly with the number of effectors J , it does not depend directly on the length
of the trial. Dimensionality also depends on the number of basis functions/pairs of ST
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parameters N i, but these numbers tend to be relatively small: recall that with N = 4, the
method already presented good reconstruction with low inter-trial variance, as in Figure 5.

Based on SB/ST representations, we were able to reconstruct vertical jump trials with
high accuracy. When 4 ≤ N ≤ 7, it was shown to outperform a Troje-inspired decom-
position. Within a similar range, VARPRO was also shown to perform almost as well
as MATLAB® default interior-point (IP) implementation, but much faster. The method
also appears to be more suitable to decompose single trials than the time-varying muscle
synergies model (TVMS).

Moreover, the representation was able to generalize over 300 jumps coming from a broad
range of jumpers: children from 6-14 years old with and without coordination disorders and
young adults. Both genders were represented in the data. We also note that a single SB-
1 vector seems to be sufficient to characterize the most important spatial aspect of the
jump trials (based on lower-body, intersegmental flexion/extension angles), which helped
to narrow down the analysis into 4 or 5 pairs of spatio-temporal parameters. From the
statistics of the means and linear coefficients of ST-1, we also observed differences among
populations of jumpers to become evident from our low dimensional representation of their
jumps. Although the results presented here come from a specific case study, we believe the
method serves as framework for a variety of movement analyses that can be carried on in
the future.

6 Discussion: limitations and final remarks

For ST parameter estimation, we chose to work with fixed standard deviations and with
a family of N Gaussians. In principle, this makes it simpler to compare populations by
just looking at parameter statistics of Gaussians having corresponding standard deviations,
as we did. Given the comparison results, this choice appeared to be adequate to the type
of data we are looking at right now, but the pre-selection of the standard deviations for
each Gaussian imposes a limitation in optimizing reconstruction. A potential improvement
would be to add standard deviations to the parameter set, estimate and quantize it into a
number of bins computed over all trials in the dataset. Population distributions could then
be compared on the basis of these discovered bins rather than the current imposed standard
deviations.

Furthermore, our family of functions Φτi does not explicitly accommodate spatio-
temporal profiles that are periodic or that have more than one mode of the same type,
because each Gaussian will fit only a certain piece of the zi profile. This could be attenu-
ated if Φτi was designed in a way that it included more than one Gaussian with the same
standard deviation. Trying to cope with a similar problem, D’Avella et al. proposed to
include repeated occurrences of synergies in their latest edition of TVMS, with overlaps
constrained by imposed refractory periods. Nevertheless, to repeat either ST functions or
synergies is a mere workaround, since it will only account for a fixed number of repetitions.
Moreover, if we allowed multiple occurrences of the same function, there would be a compu-
tational impact on how we compare populations based on parameter distributions along the
lines we proposed here. For example, the method could end up fitting three instances of G2
to the spatial-temporal profile zi of a certain trial A and only one G2 to the corresponding
profile of trial B, leaving the solution to matching B’s G2 instances to A’s undefined. For
periodic actions, an approach like the Troje-inspired one (first case of Section 4.2.1) may be
more suitable. Allowing for a short digression, it could be the case that the brain deals with
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generating and interpreting cyclic and non-cyclic actions in different ways, and an artificial
system that wanted mimic its behavior might have to figure out its type before parsing the
signals.

Finally, this is work is part of a project that attempts to bridge cognitive science, psy-
chology of movement, kinesiology and computer science. A long-term goal is to develop a
non-invasive tool that could aid in the diagnosis of behavioral disorders based on the auto-
matic detection of inter-population differences, by using SB-ST parameters as classification
features. This could be extremely useful when discrepancies are not immediately evident
to the eyes of the health care professional, or when there is disagreement in the diagnostic.
The tool could even be extended to integrate parameters from the decomposition of a larger
pool of behaviors, and statistical models for motor disorders such as DCD could be defined
in terms of the co-distributions of control and coordination parameters.
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