
Improving Browsing Environment Compliance
Evaluations for Websites

Cyntrica Eaton
4166 A. V. Williams Building

Department of Computer Science
University of Maryland, College Park, MD 20742

E-mails:ceaton@cs.umd.edu

Abstract

Identifying accessibility issues that can threaten universal website usability is critical
for web service and content providers who wish to accommodate the diverse web audience.
Detecting page-to-environment incompliance and modifying pages to promote universal
accessibility is one important step in improving the process of exploration and navigation
in the web user experience. To address this issue, we have designed a system that evaluates
the accessibility of a web page in a given browsing environment based on knowledge of
the HyperText Markup Language (HTML) tags that comprise thepage and knowledge
of the tag support provided in respective browsing environments. Given this approach,
one of the most important aspects of the system is the comprehensive nature of tag support
knowledge. The more support rules known, the more environment-specific bugs the system
can accurately identify. In order to optimize knowledge of tag support criteria, we have
also incorporated a learning mechanism that can inductively determine HTML tags that
are unsupported in a given environment by observing both positive and negative examples
of web page appearance and behavior.

1 Introduction

1.1 Motivation

Having long outgrown its novelty [27], the World Wide Web hasevolved into an indispensable
resource [2] for providing and accessing information and services [7]. Increased reliance on
the benefits that stem from a globally interconnected systemcoupled with the demands and
expectations of the growing web community have collectively driven a relevant research ef-
fort directed toward improving all aspects of web technology[7]. Addressing challenges that
threaten to diminish universal accessibility is one aspectof this multifaceted endeavor as well
as the motivation for the work presented here.

While there is a significant research effort directed towardimproving accessibility for web
constituency with sensory, cognitive, and physical limitations, another important, yet less heav-
ily studied web usability factor is accessibility constraints imposed by end-user browsing envi-
ronments. The existence and use of diverse, heterogeneous combinations of browser, browser

1

version, and operating system can cause web page presentation and functionality to vary signif-
icantly among users. Web pages that render and function as intended in one environment may
be subject to missing page elements, ill-formatted layouts, and erroneous scripts in another
[2]. Since the web audience is so diversely equipped, it is impossible to know the combination
of web browser, browser version, and platform that will be utilized by all site visitors unless a
given website is being designed for a controlled intranet. Consequently, web developers who do
not adequately evaluate browsing environment accessibility run the risk of restricting the ability
to view and interact with website content to a subset of the web population, ultimately limit-
ing audience reach. The fundamental aim of this research is to provide web developers with
an effective way of identifying browsing environment-specific accessibility issues that could
hinder users from fully exploring and interacting with the information and services featured
on a given website. Effective accessibility evaluation techniques are no less than a necessity
for web content providers interested in maximizing audience reach by identifying the browsing
environment influenced accessibility issues that could hinder some users from fully exploring
their site.

1.2 Current Approaches

One of the most widely used browsing environment accessibility evaluations amongst web de-
velopers is dynamic, or execution-based. In this approach,web browsers are the primary eval-
uation tool, and developers essentially load web pages in a variety of browsing environments
and observe subsequent presentation and functionality. Although this evaluation strategy per-
mits a first-hand account of existing accessibility issues,limitations on time and other available
resources could severely limit the depth of the website tested and the breadth of browsing en-
vironments explored. In most execution-based evaluations, a subset of target environments are
identified and reserved as testing platforms leaving many other prospective client environments
untested. As a result, the range of confidence in the accessibility of the website is substantially
restricted and users with unanticipated browser, browser version, and platform combinations
are subject to substandard presentation and functionality.

An alternative, highly effective quality assurance evaluation that can be used to assess web
page viability across a series of client environments is thecode review, a static analysis tech-
nique aimed at identifying fragments of code consistently associated with faulty behavior. In
the domain of web applications, the source of these faulty code fragments, or bug patterns,
is quite straightforward; browsing environment obstaclesarise when unrecognized, or unsup-
ported, HyperText Markup Language (HTML) tags are encountered in document source code.
More specifically, a page that renders correctly in one browsing environment may be signifi-
cantly defective in another based on the relative support ofthe tags contained in the document
source code. Consequently, HTML tags are important accessibility predictors when support
for a given tag is known to be nonexistent or insufficient; evaluating the compliance of a web
page within an environment can be reduced to identifying browsing environment-specific bug
patterns. Since this type of static analysis does not require execution and can essentially use
HTML source code as the basis for ensuring universal access,the depth and breadth of evalua-
tion is expected to improve considerably in comparison to execution-based approaches.

2

1.3 Contributions

Given the relatively efficient nature of accessibility evaluation based on tag support criteria, we
have developed a tool that will estimate website-to-browsing environment compliance based
on recognition of incompliant, or unsupported, tags withinweb page source code. This tool
essentially automates the code review process for web pagesand highlights accessibility threats
based on knowledge of the tags that comprise the web pages andthe support provided for those
tags in various browsing environments. In direct relation with the evaluation scheme, one of
the most important aspects of this tool is that it incorporates comprehensive knowledge of tag
support rules so that the possibility of false negatives, orerroneous labeling of an incompliant
page as accessible in a given environment, is greatly reduced. In other words, conducting code
reviews with faulty knowledge can severely inhibit accurate compliance analysis, causing a
web page to appear as if it will render properly in an incompliant environment. In order to
address this issue, we have incorporated an inductive learning mechanism that can estimate the
compliance of HTML tags based on observations of positive (accessible) and negative (inac-
cessible) examples of web page presentation and functionality. Note, positive examples of web
pages can be accessed and utilized as intended by the developer. Negative examples of web
pages, on the other hand, are faulty in a given environment and render improperly for users.
The underlying theory of the learning technique is that observation of HTML tags that are posi-
tively correlated with negative examples can provide insight into the root causes of accessibility
issues.

In this paper, we discuss the technique that we have developed for evaluating browsing
environment accessibility based on tag support criteria aswell as the learning mechanism we
have incorporated for updating knowledge of tag compliance. Our approach is expected to
be effective because it can identify accessibility barriers across a wide variety of browsing
environments with less time and resources than execution-based techniques and it can derive
rules about tag compliance based on examples of web pages launched in the field. The paper
is arranged as follows: Section 2 outlines the basis of the approach in addition to background
definitions that support the underlying theory for the tool.Section 3 provides an overview of
the tool and its components. Section 4 covers an initial feasibility study. Section 5 provides
insight into related work. Finally, Section 5 outlines future work and concludes.

2 Background

Subjective presentation of web pages across various browsing environments is largely a resid-
ual effect of theBrowser Wars, a period of strong competition among browser vendors at the
dawn of the web. Although the web was conceived and initiallyimplemented as a platform
neutral, device independent means of accessing information [29] and HTML was originally
intended to be a simple language for describing informationlayouts, several browser devel-
opers incorporated proprietary tags that were exclusivelysupported by their products. While
development and introduction of new HTML tags was initiallyexpected to encourage a positive
drive toward improved capabilities and more control over page layout, the frustration, loss of
productivity, and in some cases, loss of revenue that has resulted from inconsistent support of
tags across browsing environments has undoubtedly had a negative impact on the web user ex-
perience. Recognizing a need to correct this problem, the World Wide Web Consortium (W3C)
[32] set out to define a set of standard tags that all browsers should support. Theoretically, if all
browser vendors adhered to the standards, web users would beable to view a web page using

3

any given browser and gain access to consistent presentation and functionality of the corre-
sponding page. While some browsers claim to be standards compliant, there is evidence that
most truly are not in the sense that tags deemed standard by the W3C remain unsupported or
are supported improperly [6]. As a result, using the W3C validators is not an adequate measure
of cross-browser and, more specifically, cross-browsing environment compliance.

As stated before, a better measure for determining the cross-browser compliance of a web
page, at finest granularity, and a website on the whole is to identify incompliant tags within
document source code and to report predicted accessibilitythreats to the developer. Since un-
supported tags are most likely to be correlated with rendered errors, they can be consideredbug
patterns. As a result, to recast the meaning of an earlier statement, an effective code review
strategy for accessibility evaluation can essentially compare HTML source code of a document
with the bug patterns associated with a given client environment. The strength of such a code
review, however, would be heavily reliant on the comprehensiveness, or completeness of the
set of bug patterns. To further illustrate these ideas, we present the following definitions:

Definition 1: EnvironmentSpecificBug Patterns
LetE denote a browsing environment defined by the triplet<B, V, O> whereB is the browser,
V is the browser version, andO is the operating system. ConsiderT , the space of all possible
HTML document source tags:

{{∀ej ∈ E ∃I = {i1, i2, . . . , i|I|}s.t.(I ⊆ T) ∧ (unsupported(I, ej)}} (1)

That is, each browsing environment supports only a subset ofthe overall tag spaceT . All
other tags are unrecognized or incompliant in the associated environment. Consequently, tags
in I could be considered bug patterns for web pages rendered in environmentej and cross
browser accessibility of a website can be evaluated in a codereview by detecting the presence
of tagsin ∈ I.

Example1:
The tag<marquee>, though a part of the comprehensive tag setT and supported by In-

ternet Explorer, is unsupported in browsing environments that feature Netscape. Consequently,
<marquee> would be an element ofI for environmentsE whereB in the corresponding
triplet is Netscape.

The tool we have developed employs this evaluation strategyand compares the HTML tags
appearing in the source document of a web page to an inventoryof bug patterns associated
with various browsing environments. While other tools, such as Doctor HTML [10] and Bobby
[4] incorporate similar assessment techniques, we have integrated a mechanism that takes into
account the need for a complete and accurate definition ofI for each client environment. Con-
sider the following:

Definition 2: Bug PatternKnowledgeCompleteness
The accuracy of a code review based on the set of tags inI is largely dependent upon the accu-
racy and completeness of the description ofI. If for instance:

{∃ti ∈ Ts.t.(ti 6∈ I) ∧ unsupported(ti, ej)} (2)

4

performance of static analysis that does not includetj as a bug pattern will be compromised.

Example2:
Consider<blink>, a tag that is unsupported in browsing environments featuring Inter-

net Explorer. If compliance evaluation was executed for a web page that incorporated the
<blink> tag yet the tag was not listed inI as a bug pattern, the accuracy of the resulting
report would be compromised, and developers would be subject to latent failures and false con-
fidence in universal accessibility.

To address the problem of defining a comprehensive representation of I, we have incor-
porated a learning mechanism that can extract this knowledge from observations of pages that
have positive and negative presentation and functionalityin a given environment. Although tag
support knowledge is available, obtaining a comprehensivelist of the issues that exist within
several different types of environments is relatively difficult. Most information stores of tag
support knowledge only concentrate on Netscape or InternetExplorer compliance since they
are considered the more popular browsers. Given the fact that there is greater diversity in user
browsing environments, it is important that we get a better sampling of the tag support rules in
more environments to accurately evaluate browsing environment accessibility.

3 Tool Overview

As shown in Figure 1, users with different browser, browser version, and operating system com-
binations can experience a dramatic imbalance in web page appearance and performance. In
this case, the Netscape 4.8 XP Professional environment is unable to process the HTML direc-
tive, <div style="background-image:url(/objects/...)">, and the image
repeats in the rendered page as a result. The tool we have developed would examine the source
code for this web page, compare it against an inventory of tags known to be subjectively sup-
ported in a variety of browsing environments, such as the<div style="...)"> example
provided above, and return a report indicating all detectedaccessibility threats.

To support the effort to effectively acknowledge and identify existing accessibility threats,
there are essentially three main tasks of the tool we developed. They include:

• acquiring comprehensive, complete knowledge of tag support criteria within and across
browsing environments,

• utilizing tag support knowledge to evaluate accessibilitythreats for web pages within a
website,

• and producing an accessibility evaluation report outlining the existing accessibility threats
and their corresponding environments.

These tasks are carried out, respectively, by theTag Support Knowledge Base, theCompli-
ance Evaluator, and theAccessibility Report Generator. An overview of how these components
work together in the system is shown in Figure 2; a discussionof each component follows in
subsequent sections.

5

Netscape 4.8 XP Professional Internet Explorer 6.0 XP Professional

Figure 1: An example of the significant impact browsing environments can have on accessibil-
ity.

3.1 Tag Support Knowledge Base

Adequate population of the Tag Support Knowledge Base is oneof the most important as-
pects of the tool since attempting to detect accessibility threats with faulty knowledge can
severely inhibit an accurate report of web page compliance;consequently, developing an ad-
equate knowledge base is imperative to identifying all accessibility threats that exist within
a website. To support tag criteria knowledge acquisition, we have incorporated two distinct
methods:

• web developers can provide rules (Section 3.1.1),

• rules can be inductively learned based on observations of positive and negative examples
of web pages (Section 3.1.2).

3.1.1 Manual Acquisition of Tag Support

Manual acquisition of tag support criteria involves accepting tag support rules directly from
web developers. Since documentation on tag support criteria exists, it is possible for web de-
velopers to gain access to these rules from various sources and manually enter them into the
system. In addition, however, this feature allows developers to specify, or design, arbitrary tag
rules to examine customized tag-related issues of interest. This essentially empowers users to
perform custom evaluations beyond the scope of browsing environment accessibility making
the tool more flexible and subsequently allowing more customized analysis.

While manual acquisition of tag support criteria can be veryuseful, making web develop-
ers solely responsible for providing all necessary supportcriteria is potentially problematic. In
particular, a bottleneck could develop since developers would be responsible for both gathering
information and making it available to the tool; also, the resulting accessibility analysis could
be compromised since the rules provided might be less than comprehensive. For instance, if a
support rule was not explicitly provided to the tool, it would not be applied during subsequent
analysis; this would undoubtedly have a negative impact on analysis accuracy. To help combat

6

+/-

Web page

Examples

Learning

Mechanism

Tag Support

Knowledge

Base

Web Developer

Tag Support

Pattern

Generator

Web page

evaluation

candidate

Web Crawler

User-specified

URL

Compliance

Evaluator

Accessibility

Report

Knowledge

Acquisition

Compliance

Estimation

Figure 2: System Overview

these issues, we have incorporated an automatic acquisition method as well.

3.1.2 Automatic Acquisition of Tag Support

Recognizing the benefit of having an automated method for gathering tag support in improv-
ing the accuracy of rules retrieved and reducing the burden of the web developer in providing
support criteria, we have implemented a learning algorithm; the goal of the algorithm will be
to determine the likelihood that an HTML tag is incompliant,or unsupported, given the magni-
tude of positive correlation with faulty web pages. In termsof the definitions provided earlier,
the effort to maintain an accurate, comprehensive knowledge base of unsupported tags,I, as-
sociated with a given environment,ej, can greatly benefit from machine learning methods by
refining the definition ofI based on observation of pages that worked properly in an associated
environment (positive examples) and those that were faulty(negative examples).

As stated before, the major drawback to execution-based accessibility evaluations is the
fact that web developers generally lack the time and environment access necessary to perform
a thorough assessment. The fact that execution-based techniques feature a first hand account
of accessibility issues is actually quite attractive, however, and could provide more insight into
existing problems. In designing the learning mechanism, wehave established an infrastructure
in which average users can submit the URL of a web page they deem to be inaccessible or
improperly rendered in their given environment over a normal browsing session; this essen-
tially allows first-hand accounts of faults encountered to be factored into the analysis. In the
next section, we offer insight into how the results of user experiences can be used to support
detection of accessibility threats in subsequent code reviews.

Learning Technique: In the inductive, or learning by example, methodology presented here,
web pages are the raw material for training. The HTML tags that structure the web page and
the manually defined classification of the web page as either apositive or negative example
provides a statistical basis for determining the influence agiven tag has on web page accessi-
bility. To evaluate the association of a given tag with inaccessibility in our current tool, theχ2

7

[33] value of the tag will be evaluated. In short,χ2 uses observance of positive and negative
examples to estimate the association of an element to one category or another. In our tool, the
χ2 statistic measures the lack of independence of a tag,t, and a category,c, and evaluates to 0
if the term is independent. The equation is provided below:

χ2(t, c) =
N × (AD − CB)2

(A + C) × (B + D) × (A + B) × (C + D)
(3)

Here,A is the number of positive examples that contain a tag,t; B is the number of negative
examples that containt; C is the number of positive examples that do not containt, and D is
the number of negative examples that do not include the giventag,t.

Web Page Collector: To briefly take a step back, let’s consider how the system willacquire
the raw material for induction. A web page collector will provide the front end of the learn-
ing component, allowing users to submit URLs of both positive and negative examples of web
pages in associated environments. Next, the collector willretrieve the corresponding web page
and update the values ofA, B, C, andD for tags found in the source code; this process will
help to establish the likelihood that a given tag is associated with diminished accessibility in an
associated browsing environment.

Inference Mechanism: To facilitate the learning process, the inference mechanism incorpo-
rates a structure that maintains theχ2 value for each tag. In particular, each environment is
assigned ann × 2 table in which the first column lists then tags found in examples and the
second column of the table hold theχ2 value for the corresponding tags.

To illustrate the learning strategy and use of the inferencestructure, consider the following
results obtained after observing positive/negative instances and calculatingχ2 for each tag re-
covered:

Tag χ2

HTML 0
Java 1.3 1.5
Java 1.2 2.0
Java 1.1 0.33
Table 5.0
Bold 1.3

Given the data presented and the criteria stated before, thefirst conclusion that can be drawn
is that theHTML tag is independent of whether the page is classified as working or faulty. As a
result, the inference mechanism can delete this particulartag from the inference table and place
it on a list of accepted tags resulting in the following:

Tag χ2

Java 1.3 1.5
Java 1.2 2.0
Java 1.1 0.33
Table 5.0
Bold 1.3

8

Supported Tags HTML

Next, the inference mechanism can observe that, in the particular set of examples submit-
ted, theJava 1.1 tag never occurs in a negative web page although it has appeared in several
positive documents provided in the database. The same holdsfor theBold tag as well. Con-
sequently, those tags can be removed form the inference table and added to the list of accepted
tags:

Tag χ2

Java 1.3 1.5
Java 1.2 2.0
Table 5.0

Supported Tags HTML Java 1.1 Bold

Given this latest development, it can be assumed thatJava 1.3, Java 1.2, andTable
are possibly faulty tags, and the inference mechanism can use theχ2 value to estimate the like-
lihood that the associated tag is associated with faulty webpages. More specifically, when
reporting to the result generator, the inference mechanismcan incorporate a threshold to deter-
mineχ2 values that correspond with highly probable faulty tags.

3.2 Compliance Evaluator

Once rules have been entered, the system will be primed to evaluate web page accessibility. To
begin evaluation, web pages are retrieved from a user-specified root and a web crawler sends
the retrieved HTML code to the Compliance Evaluator for analysis. The Compliance Evaluator
is essentially responsible for using knowledge of incompliant tags to estimate the prospective
accessibility of a given web page within a respective environment. More specifically, using
regularized versions of bug patterns stored in the Tag Support Knowledge Base, the Compliance
Evaluator accepts a series of web pages from the web crawler,applies the tag-based regular
expressions to them, and indicates matches to the report generator.

3.3 Accessibility Report Generator

The accessibility report generator provides tool users with an overview of the pages traversed
from a root, most likely a home page, in a hierarchical listing of pages encountered in addition
to, and most importantly, an outline of the pages that are expected to fail in a corresponding
environment. The hierarchy of the site, as outlined in the tool, provides users with a general
idea of the shortest path from the root URL to the page of interest following a series of links.
The tool also provides indicators of unreachable, or broken, links as well. An example of this
is shown in Figure 3.

Note, in Figure 3, the pane of the interface labeled (3) displays an overview of the pages
that are suspected to be faulty in the associated environment. To back track, the area labeled (1)
allows users to specify the root URL from which to retrieve subsequent pages, the button la-
beled (2) allows the user to import a file of customized tag rules and finally, the pane labeled (4)

9

1 2

34

Figure 3: System Interface

provides an overview of the site where the root node corresponds with the root URL provided
by the user and all succeeding nodes represent reachable webpages.

4 Feasibility Study

One of the major assertions of our work is that web developerscan determine the browsing
environment profiles that will not process their web pages accurately based on the tags that
structure the page and the support provided for each tag. To evaluate the ability of our tool to
do this, we manually provided the tool with a list of tags thatwere not supported in various
environments and applied it to a mock website in order to determine how well the tool would
perform. To prime the knowledge base with environment-specific support rules, we consulted
several sources on tag support provided in various environments. From the data we attained
(a sample of which is shown in Figure 4(a)) we were able to derive an input file of browsing
environment bug patterns (a sample of which is shown in Figure 4(b)).

Rule Set: Incompliant Netscape 4.0 HTML

<script language = “javascript1.3”>

<marquee>

Rule Set: Incompliant Internet Explorer 5.0 HTML

<blink>

<body marginwidth=“*”>

………………………………………

Rule Set: Incompliant Netscape 4.0 HTML

Tag: script

Attribute: language

Value: javascript1.3

Tag: marquee

Rule Set: Incompliant Internet Explorer 5.0 HTML

………………………………………

(a) (b)

Figure 4: An example of tag support rules (a) and how developers represent them during manual
acquisition (b).

To begin browsing environment accessibility analysis, we provided the homepage URL of
the web site as the root in region (1) of Figure 3. Next, we imported an input file similar to
Figure 4(b). We were able to observe the arrangement of the website in pane (4) of Figure 3 and

10

the accessibility threats detected in pane (3) of Figure 3. As a result of our analysis, we were
able to quickly identify web pages with possible accessibility threats, the unsupported tags
they contained, and the environments they would be unsupported in. Detecting the presence of
unsupported tags and presenting them to a web developer who might have used a What You See
Is What You Get (WYSIWYG) development tool is expected to make the process of correcting
such issues much easier. As a result, we are highly confident in the viability of our tool. We
feel it will be highly beneficial to web developers by alerting them of the issues that must be
corrected in order to make the information or content they feature available to all web users
regardless of browsing environment.

5 Related Work

The overall endeavor to detect browsing environment accessibility barriers and to ensure com-
prehensive knowledge of tag support falls under general research endeavors associated with
web testing, bug isolation, and bug patterns. While the relation to web testing may be obvious,
bug isolation is a related endeavor because the attempt to discover new tag support rules is
largely an attempt to isolate faulty tags given observations of source documents. Bug patterns,
of course, are related because faulty tags can be recast as bug patterns and used during a code
review to detect possible accessibility barriers. In this section, we discuss other work that ad-
dress these issues.

5.1 Web Testing

5.1.1 Web Accessibility

While ensuring and improving accessibility amongst web constituency has been identified as
an important issue, most of the work in this area is directed toward improving accessibility
for individuals with physical limitations [1, 15, 30], our work, on the other hand, focuses on
the less heavily studied issue of accessibility constraints imposed by end-user browsing envi-
ronments. Published work specifically targeted at improving accessibility evaluations based on
browsing environment related constraints [2, 3] is relatively scarce. In addition, there have been
relatively few tools created to detect threats to this specific type of accessibility factor [4, 5, 10].

In terms of published work, Berghel [3] presented an accessibility evaluation framework
based on the concept of the test patterns used in earlier daysto repair and adjust television
sets. In Berghel’s approach, the so-calledWeb Test Pattern was comprised of a suite of test
web pages, each of which incorporated several HTML tags and descriptions of the impact they
would have if rendered correctly. This approach essentially allowed users to test their partic-
ular client environments to determine compliance levels, but for web developers interested in
establishing compliance across a wide variety of platforms, this type of dynamic testing could
be severely inefficient. The Browser Photo [5] tool improveson the idea of the test pattern by
automatically loading and testing specific pages in a variety of browsing environments and pro-
viding screenshots of the results back to the user. Though Browser Photo [5] does not restrict
developers to a predefined list of tags and eliminates the need for users to manually load pages
themselves, this approach is weakened by the fact that web activity can only be observed above
the fold since scrolling to see the entire screen is not an option in individual screenshots; it also

11

limits the amount of browsing environments that can be tested to the ones featured within the
tool.

Other tools that address this problem [4, 10] employ static analysis to identify environment-
specific bugs by observing the source code of HTML documents and detecting tags that are
known to be incompliant in browsing environments. Yet, again, these tools constrains users
to the browsing environments featured and their evaluations are limited by the comprehensive
nature of tag support knowledge. As it stands, our system is expected to improve environment
accessibility evaluation for tools like these by observingreal-word examples of positive and
negative page behavior, determining the actual tag supportcriteria in corresponding browsing
environments, and providing this knowledge to such tool so that support criteria can be updated
accordingly.

5.1.2 More General Concerns

Ensuring web page quality has become a significant research goal over the years; in general,
there has been a great deal of effort placed in applying traditional quality assurance measures
to web-based software from object-oriented solutions [7, 9, 24], to reverse engineering tech-
niques [13, 16, 20]. Yet, there are several differences between traditional software systems and
the web environment that complicate the endeavor. For one, although traditional software de-
velopers had to be relatively familiar with a language before being confident enough to create
and distribute products publicly, a growing number of authoring tools providing WYSIWYG
tools allow developers to create web pages without being familiar with HTML[30]. The fact
that web designers are not necessarily technology specialists threatens the goal of universal
quality assurance largely because successful delivery of operable web pages is dependent upon
the developers awareness of the aspects involved [27]. While these endeavors share the spirit
of our work, assessing the correctness of web applications before they are released in the field,
we are most concerned with the challenges presented when webenvironments are untested and
the corresponding environment does not support page elements.

5.2 Bug Isolation and Bug Patterns

On a more general level, there is a body of work related to our overall goal of providing a
practical and effective tool for helping software developers detect errors and identify their root
causes. In this section, we discuss work involved with bug isolation and bug pattern generation
in more traditional software. In [12], Hangal and Lam present DIDUCE, a tool that isolates the
root of errors based on identification of system invariants.The work presented in [19] is very
similar to our own because the goal is to recognize bugs in systems based on user experiences
with faulty executions. The idea is to gather user executionprofiles, identify predicates in the
source code and, use logistic regression to determine the statements most strongly correlated
with system failure. As noted in [11], one of the major obstacles to finding program errors is
simply knowing the correctness rules the system must obey. The technique they present looks
for contradiction in code constructs, points out the differences, and allows users an opportunity
to determine which of the two is incorrect. Once a contradiction is identified, a template rule,
or bug pattern, is devised to identify other code that may be the root of similar errors. In
[22], Matsumura et. al use bug code patterns to identify violations of implicit coding rules.
In other words, legacy systems usually incorporate a seriesof undocumented, implicit rules
that effect execution; new developers to a team may be unaware of them and violate them
during maintenance. The idea is to investigate bug reports,identify the error, and derive a bug

12

pattern that can be used to identify similar code constructs. In our case, novice developers are
analogous to new developers on a team unaware of implicit coding rules, individuals in the field
encountering faulty executions essentially submit bug reports, and the learning mechanism we
have developed identifies the faulty tags and derive corresponding bug patterns.

6 Future Work and Conclusion

6.1 Future Work

The algorithms presented here represent our initial attempts to effectively identify tag-related
hindrances to universal accessibility and to devise a plan for inductively determining the tags
that are unsupported or incompliant in associated browsingenvironments. While we are fairly
confident in the design we have incorporated for evaluating compliance for individual web
pages, we plan to expand the scope of the learning algorithm with further investigation. More
specifically, at the very beginning of this project, our initial approach to this problem was
to exploit the model of text classification. Yet, instead of detecting words or features most
associated with a category, we wanted to determine the accessibility constraints associated with
source HTML tags given the strength of association with pre-categorized web pages. In this
sense, our interests align because we want to classify the features, or tags, of web documents
based on their appearance in, and subsequent association with, accessible and inaccessible
pages.

In identifying other fields from which a strong learning algorithm can be based, one highly
analogous field is epidemiological study in which the cause of a disease is identified. One
particular class of experiment, the case-control study, ismost commonly used to study disease
etiology and the premise of this type of investigation is in direct alignment with our method for
discovering incompliant tags. In short, case-control studies are retrospective in that researchers
start with the knowledge of disease occurrence and work backwards to identify any risk factors
which can be associated with the outcome. Risk factors, in this domain, are conditions, events,
or characteristics which are associated with an increase inrisk for a given disease. Similarly, in
our mechanism for learning tag compliance, web pages are expected to be preclassified, mean-
ing the outcome is already known. We essentially want to determine the tags most responsible
for the classification by identifying tags that have high association with faulty web pages. Given
the high level of similarity to case-control studies, one ofour future endeavors is to observe
the range of techniques employed in case control studies [14, 18, 23, 26] in addition to specific
techniques for determining the most significant features ina learning set [8, 17, 28], alternative
techniques for determining causation [21, 31], and methodsfor handling conflicts among data
sets in order to identify other, perhaps more appropriate approaches to this problem.

Also, as noted in [25], while building knowledge bases by mass collaboration can greatly
improve the time and effort needed to accumulate information, such an approach brings issues
such as quality, consistency, and relevance of submitted information and the scalability of learn-
ing algorithms used to surface. In our particular case, since the knowledge derived is heavily
dependent on examples, it is important that users categorize pages accurately, that examples
provide a relevant bases for inference, and that the algorithm is able to process large numbers
of contributions accurately. Ensuring that pages providedto the engine actually represent pos-
itive and negative examples as labeled and that the population size observed is large enough to
derive accurate generalizations will have a direct impact on the success of the approach. Ad-
dressing such issues is expected to be a significant part of a future endeavor to maximize the
potential of this system on a whole, and the learning mechanism in particular.

13

6.2 Conclusion

The motivation of this work is one facet of a general endeavorto support and improve the
quality of user experiences on the web. The diversity in browsing environments used to nav-
igate the web present a unique challenge for web content providers to effectively asses and
correct threats to universal accessibility. Our contribution to this problem has been to derive
a framework that can detect accessibility threats based on known bug patterns and to improve
knowledge of tag support rules for browsing environments byinductively learning from work-
ing and faulty examples of page behavior or appearance. By continuing to observe alternative
etiological measures and persistently updating and refining our tool based on our findings, we
believe that we can provide an extremely effective defense against the lost productivity and
revenue associated with browser-related accessibility issues.

References

[1] Dorothy Ann Amsler. Establishing standards for usable and accessible user services web
sites. InSIGUCCS’03: Proceedingsof the31stAnnualACM SIGUCCSConferenceon
UserServices, pages 63–64, New York, NY, USA, 2003. ACM Press.

[2] Hal Berghel. Using the WWW test pattern to check HTML compliance. Computer,
28(9):63–65, 1995.

[3] Hal Berghel. HTML compliance and the return of the test pattern. Communicationsof
theACM, 39(2):19–22, 1996.

[4] Bobby. http://www.watchfire.com/products/webxm/bobby.aspx.

[5] Browser photo by NetMechanic. http://www.netmechanic.com/browser-index.htm.

[6] Joe Clark. The glorious Peoples myth of standards compliance.
http://www.joeclark.org/glorious.html.

[7] Francesco Coda, Carlo Ghezzi, Giovanni Vigna, and Franca Garzotto. Towards a software
engineering approach to web site development. InIWSSD ’98: Proceedingsof the 9th
InternationalWorkshopon SoftwareSpecificationandDesign, page 8. IEEE Computer
Society, 1998.

[8] David R. Cox and E. Joyce Snell. The choice of variables inobservational studies.
AppliedStatistics, 23(1):51–59, 1974.

[9] Pei Hsia D.C. Kung, Chien-Hung Liu. An object-oriented web test model for testing web
applications. InProceedings.First Asia-PacificConferenceon Quality Software, pages
111–120, 2000.

[10] Doctor HTML. http://www2.imagiware.com/RxHTML/.

[11] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as
deviant behavior: a general approach to inferring errors insystems code. InSOSP’01:
Proceedingsof theeighteenthACM symposiumon Operatingsystemsprinciples, pages
57–72. ACM Press, 2001.

14

[12] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using automatic
anomaly detection. InICSE ’02: Proceedingsof the 24th InternationalConferenceon
SoftwareEngineering, pages 291–301. ACM Press, 2002.

[13] Ahmed E. Hassan and Richard C. Holt. Architecture recovery of web applications. In
ICSE ’02: Proceedingsof the 24th InternationalConferenceon SoftwareEngineering,
pages 349–359. ACM Press, 2002.

[14] John H. Holmes. Discovering risk of disease with a learning classifier system. In
InternationalConferenceon GeneticAlgorithms, pages 426–433. Morgan Kaufmann,
1997.

[15] Leonard R. Kasday. A tool to evaluate universal web accessibility. In CUU ’00:
Proceedingson the2000Conferenceon UniversalUsability, pages 161–162, New York,
NY, USA, 2000. ACM Press.

[16] Holger M. Kienle and Hausi A. Mller. Leveraging programanalysis for web site reverse
engineering. InWSE ’01: Proceedingsof the 3rd InternationalWorkshopon Web Site
Evolution(WSE’01), page 117. IEEE Computer Society, 2001.

[17] George V. Lashkia. Learning with relevant features andexamples. InInternational
ConferenceonPatternRecognition, pages 68–71, 2002.

[18] Susan Lewallen and Paul Courtright. Epidemiology in practice: Case-control studies.
CommunityEyeHealthJournal, 11(28):57–58, 1998.

[19] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via re-
mote program sampling. InProceedingsof the ACM SIGPLAN 2003Conferenceon
ProgrammingLanguageDesignandImplementation, San Diego, California, June 9–11
2003.

[20] Giuseppe A. Di Lucca, Massimiliano Di Penta, Giuliano Antoniol, and Gerardo Casazza.
An approach for reverse engineering of web-based applications. In WCRE ’01:
Proceedingsof the Eighth Working Conferenceon ReverseEngineering(WCRE’01),
pages 231–240. IEEE Computer Society, 2001.

[21] Iain Martel. Probabilistic empiricism: In defence of aReichenbachian theory of causation
and the direction of time.Thesis-Universityof Colorado, 2000.

[22] Tomoko Matsumura, Akito Monden, and Ken ichi Matsumoto. A method for detect-
ing faulty code violating implicit coding rules. InIWPSE ’02: Proceedingsof the
InternationalWorkshopon Principlesof SoftwareEvolution, pages 15–21. ACM Press,
2002.

[23] Dirk Pfeiffer and Roger S. Morris. Comparison of four multivariate techniques for
causal analysis of epidemiological field studies. InProceedingsof the7th International
SymposiumonVeterinaryEpidemiologyandEconomics, pages 165–170, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[24] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. InICSE’01:
Proceedingsof the23rdInternationalConferenceonSoftwareEngineering, pages 25–34.
IEEE Computer Society, 2001.

15

[25] Matthew Richardson and Pedro Domingos. Building largeknowledge bases by mass
collaboration. InK-CAP ’03: Proceedingsof theInternationalConferenceonKnowledge
Capture, pages 129–137. ACM Press, 2003.

[26] Shaun R. Seaman and Sylvia Richardson. Bayesian analysis of case-control studies with
categorical covariates.Biometrika, 88(4):1073–1088, 2001.

[27] Brian Sierkowski. Achieving web accessibility. InProceedingsof the ACM SIGUCS
ConferenceonUserServices, pages 288–291, 2002.

[28] Keith W. Smillie. Regression analysis: Theory and computation. InProceedingsof the
Eigth InternationalConferenceonAPL, pages 401–407, 1976.

[29] Terry Sullivan and Rebecca Matson. Barriers to use: usability and content accessibility
on the web’s most popular sites. InCUU ’00: Proceedingson the 2000conferenceon
UniversalUsability, pages 139–144, New York, NY, USA, 2000. ACM Press.

[30] C. A. Velasco and T. Verelest. Raising awareness among designers of accessibility issues.
In ACM SIGRAPHComputersandthePhysicallyHandicapped, pages 8–3, 2001.

[31] Peter Vineis. Causality in epidemiology.SozPraventivMed, 48(2):80–87, 2003.

[32] W3C. http://www.w3.org/.

[33] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. InICML ’97: Proceedingsof theFourteenthInternationalConferenceon
MachineLearning, pages 412–420, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc.

16

