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Abstract

For Bayesian combinatorial auctions, we present a general framework for reducing the mech-
anism design problem for many buyers to the mechanism design problem for one buyer. Our
generic reduction works for any separable objective (e.g., welfare, revenue, etc) and any space
of valuations (e.g. submodular, additive, etc) and any distribution of valuations as long as val-
uations of different buyers are distributed independently (not necessarily identically). Roughly
speaking, we present two generic n-buyer mechanisms that use 1-buyer mechanisms as black
boxes. We show that if we have an α-approximate 1-buyer mechanism for each buyer1 then our
generic n-buyer mechanisms are 1

2α-approximation of the optimal n-buyer mechanism. Further-
more, if we have several copies of each item and no buyer ever needs more than 1

k of all copies of
each item then our generic n-buyer mechanisms are γkα-approximation of the optimal n-buyer
mechanism where γk ≥ 1− 1√

k+3
. Observe that γk is at least 1

2 and approaches 1 as k increases.

Applications of our main theorem include the following improvements on results from the
literature. For each of the following models we construct a 1-buyer mechanism and then apply
our generic expansion: For revenue maximization in combinatorial auctions with hard budget
constraints, [BGGM10] presented a 1

4 -approximate BIC mechanism for additive/correlated valu-
ations and an O(1)-approximate2 sequential posted pricing mechanism for additive/independent
valuations. We improve this to a γk-approximate BIC mechanism and a γk(1− 1

e )-approximate
sequential posted pricing mechanism respectively. For revenue maximization in combinatorial
auctions with unit demand buyers, [CHMS10] presented a 1

6.75 -approximate sequential posted
pricing mechanism. We improve this to a 1

2γk approximate sequential posted pricing mecha-
nism. We also present a γk-approximate sequential posted pricing mechanism for unit-demand
multi-unit auctions(homogeneous) with hard-budget constraints. Furthermore, our sequential
posted pricing mechanisms assume no control or prior information about the order in which
buyers arrive.

∗Dept. of Computer Science, University of Maryland, College Park, MD 20742. saeed@cs.umd.edu. Part of this
work was done when the author was visiting Microsoft Research, New England. This work was partially supported
by the NSF grant CCF-0728839
†Id: bca.tex 118 2011-04-29 05:02:28Z saeed
1Note that we can use different 1-buyer mechanisms for different buyers.
2O(1) = 1
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1 Introduction

In this paper we consider the problem of designing Bayesian combinatorial auctions for maximiz-
ing any separable objective (welfare, revenue, etc) and present a general framework for reducing
the mechanism design problem for many buyers to the mechanism design problem for one buyer.
Designing mechanisms for objectives other than welfare has inherently been more difficult as the
objective of the mechanism is no longer aligned with the incentives of buyers. For example [HKM11]
presents a black box reduction from BIC mechanism design to algorithmic design in multidimen-
sional setting, but unfortunately their technique only works for maximizing welfare and there is no
trivial way to extend it to other objectives like revenue.

From a high level point of view we face the following two challenges in designing mechanisms
for many buyers:

(i) The decisions made by the mechanism for different buyers should be coordinated because of
supply constraints.

(ii) The decisions made by the mechanism for each buyer has to be optimal (or approximately
optimal).

In this paper we address the first challenge by showing that if we know how to make an approx-
imately optimal decision for each buyer separately then we can also make approximately optimal
coordinated decisions for all buyers. We show that, by going from uncoordinated decisions to coor-
dinated decisions, we lose a factor of at most 1

2 in the approximation factor. Furthermore, we show
that this loss is no more than 1√

k+3
when the ratio of the maximum possible demand of any buyer

for any item to the supply of that item is no more than 1
k . Observe that if we had an unlimited

supply of items (i.e., k →∞) this loss would go down to 0, which is what we would expect, because
with unlimited supply the optimal mechanism would treat each buyer independently3. Also observe
that this does not depend on the number of buyers.

The paper is organized as follows: In section 2 we explain our model and a summary of our main
results. In section 4, we present a toy problem and a near optimal algorithm for it which we use
to improve the bound of the generalized prophet inequality for sum of k-choices. The best known

bound for this generalization was 1−O(
√
ln k√
k

) by [HKS07]. We improve this bound to 1− 1√
k+3

by

constructing a gambler that achieves this bound. This gambler uses the solution of our toy problem
as a black box. This toy problem has important applications in Bayesian mechanism design and
online stochastic optimization. The algorithm we develop for this toy problem is the main ingredient
for our generic construction of n-buyer mechanisms. In section 5, we present two generic n-buyer
mechanisms that use 1-buyer mechanisms as black boxes. We show that if we have an α-approximate
1-buyer mechanism for each buyer then our generic n-buyer mechanisms are 1

2α-approximation of
the optimal n-buyer mechanism. Furthermore, if we have several copies of each item and no buyer
ever needs more than 1

k of all copies of each item then our generic n-buyer mechanisms are γkα-
approximation of the optimal n-buyer mechanism where γk ≥ 1− 1√

k+3
. In Appendix A, we present

improved n-buyer mechanisms for some of the models recently considered in the literature. For
each model we construct a 1-buyer mechanism and then apply our generic expansion to convert it
to an n-buyer mechanism. All of the missing proofs are provided in Appendix E.

3Throughout this paper we always assume that valuations of different buyers are independent
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2 Model and Main Results

In this section we present a summary of our main results. We start by formally defining our model
and the problem.

Definition 1 (Model and Problem Definition). There are n buyers and m types of items. We use
N to denote the set of buyers and M to denote the set of item types. We have kj copies of each
item j ∈M and we assume that no buyer needs more than one copy of each item (in Appendix D,
we show that the more general model, in which each buyer may demand more than one copy of
each item but no more than 1

k of all copies of an item, can be reduced to this simpler model).
Let k = minjkj. We assume that valuations of different buyers are distributed independently (not
necessarily identically). However, we make no assumption on how the valuations of an individual
buyer for different items or bundles are distributed. Furthermore, we do not make any assumption
on the space of valuations of each buyer (e.g., it could be submodular, additive, etc). Moreover,
we allow each individual buyer to have feasibility constraints (e.g., budget, matroid, etc). The
problem we want to solve is to design an n-buyer Bayesian combinatorial auction mechanism for
maximizing a given objective (e.g., welfare, revenue, etc). We assume that the objective that we
want to maximize is separable over buyers, i.e., it can be written as the sum of the objective values
obtained from each buyer. For example both revenue and welfare are separable objectives.

For our generic expansion, we need certain kinds of 1-buyer mechanisms that allow us to specify
an upper bound on the probability of allocating each item. We call such a 1-buyer mechanism a
“primary mechanism” which we formally define next.

Definition 2 (Primary Mechanism). A primary mechanism is a 1-buyer mechanism with the extra
feature that it allows the auctioneer to specify an upper bound on the probability of allocating each
item. We use the notation M(q̄) where q̄ ∈ [0, 1]m to denote a primary mechanism M when
restricted to allocate each item j with probability at most q̄j. Note that primary mechanisms can
be defined for any separable objective and under any set of feasibility constraints just like ordinary
mechanisms. We define an α-approximate primary mechanism to consist of a primary mechanism
M and a concave benchmark function R(q̄) : [0, 1]m → R+. The benchmark function gives an upper
bound on the expected objective value of the optimal primary mechanism when it is restricted to
allocate each item j with probability at most q̄j. M achieves at least α fraction of the benchmark
in expectation.

Note that we require the benchmark functions to be concave. We justify this in Theorem 5 by
showing that the expected objective value of the optimal primary mechanism (both for welfare and
revenue) is always concave in q̄. The following informal theorem summarizes our main result on
generic construction of n-buyer mechanisms using primary mechanisms.

Theorem 1 (Market Expansion). If we have an α-approximate truthful primary mechanism Mi

for each buyer i ∈ N and with some further assumptions (explained next) we can construct a generic
γkα-approximate n-buyer truthful mechanism (γk ≥ 1− 1√

k+3
) using M1, · · · ,Mn as black boxes.

Note that we do not require the primary mechanisms for different buyers to be of the same kind.
This allows the flexibility of having different classes of buyers in the same auction (e.g., one buyer
might have additive valuations with a hard budget constraint while another one might be unit
demand with no budget constraints). Below, we present a formal explanation of the assumptions
and the result of Theorem 1. Suppose for each buyer i we have an α-approximate truthful (in
expectation) primary mechanism Mi, then each one of the following theorems specify a separate
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set of assumptions that is sufficient to apply one of our generic expansions (the terms BIC, DSIC,
AIP, etc. are defined at the end of this section).

• Theorem 7: Assuming that for any q̄ ∈ [0, 1]m the exact probability by which each Mi(q̄)
allocates each item can be computed (remember that q̄ is just an upper bound), and assuming
valuations of each buyer can be represented as a weighted rank function of a matroid (see
Def. 11), the BIC-expansion mechanism Mech. 1 is an n-buyer BIC mechanism which is a
γkα-approximation of the optimal n-buyer BIC mechanism.

• Theorem 8: Assuming the benchmark functions Ri(·) are submodular (see Def. 12) the DSIC-
expansion mechanism Mech. 2 is an n-buyer DSIC mechanism which is a γkα-approximation
of the optimal n-buyer BIC mechanism.

• Theorem 9: Assuming eachMi is an α-approximate primary IP mechanism that approximates
the optimal primary IP mechanism (as opposed to approximating the optimal primary mech-
anism), and assuming the benchmark functions Ri(·) are submodular, the DSIC-expansion
mechanism Mech. 2 is an SIP mechanism that is a γkα-approximation of the optimal n-buyer
AIP mechanism.

We should emphasize that when each primary mechanism approximates the optimal (random-
ized) primary mechanism, our generic n-buyer mechanism approximates the optimal (randomized)
n-buyer mechanism. However, when each primary mechanism approximates the optimal (random-
ized) primary IP mechanism, our generic n-buyer mechanism approximates the optimal (random-
ized) AIP mechanism.

To illustrate the applicability of our generic expansions, we consider some of the more popular
models from the literature and present an improved n-buyer mechanism for each one. For each
model we construct a primary mechanism and then apply one of our generic expansions to convert
it to an n-buyer mechanism. The models considered along with the resulting mechanisms are listed
in Table 1. We construct the primary mechanisms for these models in Appendix A.

Primary Mech/Expanded by Setting Type Approximation

A.1 Mech. 3 / Mech. 1 additive correlated valuations with poly-
nomial number of types, budget, capac-
ity, revenue or welfare

general(BIC) γk of optimal BIC

A.2 Mech. 4/ Mech. 2 unit demand, single item(multi unit),
budget, revenue

SIP γk of optimal AIP

A.3 Mech. 5 / Mech. 2 additive valuations, product distribution,
budget, revenue

SIP γk(1 − 1
e
) of optimal AIP

A.4 Mech. 6/ Mech. 2 unit demand, product distribution (reg-
ular), revenue

SIP 1
2
γk of optimal AIP

Table 1: Summary of mechanisms constructed using our generic expansion.

Next, we present some definitions that will be used throughout the rest of the paper:

Definition 3 (Bayesian Incentive Compatible (BIC)). A mechanism is BIC iff for every agent
truth telling maximizes the expected payoff where the expectation is taken over the types of other
agents and random choices of the mechanism.

Definition 4 (Dominant Strategy Incentive Compatible (DSIC)). A mechanism is DSIC iff for
every agent truth telling maximizes the expected payoff for any possible reports of other agents where
the expectation is taken over random choices of the mechanism.
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Definition 5 (Asymmetric Item Pricing (AIP)). A combinatorial auction mechanism is AIP iff it
can be interpreted as a mechanism of the following form: The mechanism collects the reports (types)
of all buyers and computes the allocations/payments. However, for each buyer, it also computes
an assignment of prices to individual items using only the reports of other buyers and the random
choices of the mechanism such that the allocation/payment that was computed for this buyer would
correspond to an optimal bundle for this buyer according to these prices. Note that AIP mechanisms
could be randomized. Furthermore, to accommodate buyers that have budget constraints, an AIP
mechanism offers a lottery option for each item. The lottery option works as follow: a buyer can
pay a fraction of the price of an item and then receive the item with probability proportional to the
paid fraction of the price 4. Note that an AIP mechanism with budget constrained buyers does not
need to explicitly ask buyers whether they want to choose a lottery option, instead it is only required
that the outcome of the mechanism can be interpreted in such a way (i.e., the mechanism may only
output the final allocations/payments).

Definition 6 (Item Pricing (IP)). A combinatorial auction mechanism is IP iff it is AIP and the
assigned item prices are the same from the perspective of every buyer. Note that AIP and IP are
the same for primary mechanisms.

Definition 7 (Sequential Item Pricing (SIP)). 5 A mechanism is SIP iff it is AIP and it can be
implemented in the following form: The mechanism visits the buyers in some order which is not
controlled by the mechanism and for each buyer it posts prices for items where these prices are
computed based on the prior information, the outcomes of previously visited buyers and the random
choices of the mechanism. Each buyer buys her optimal bundle based on the prices offered to her.

Note that the space of SIP mechanisms is a strict subset of the space of AIP mechanisms. For
example, when all buyers are unit demand, the VCG mechanism is a deterministic AIP mechanism
however it cannot be implemented as an SIP mechanism. Observe that every AIP mechanism is
DSIC.

3 Related Work

Until recently, in the CS literature, most of the work on Bayesian mechanism design for objectives
other than welfare had been focused on revenue maximization in single dimensional settings. Many
of them study mechanisms that have simple implementation and approximate the Myerson’s mecha-
nism [Mye81] (e.g., [BR89, BLP06, BH08, HR09, DRY10]). Following the recent work of [CHMS10]
and [BGGM10], there has been a trend toward designing approximation mechanisms with simple
implementation for maximizing revenue in multi-dimensional settings. [CHMS10] presents several
sequential posted pricing mechanisms for various settings with different types of matroid feasibility
constraints. Their mechanisms are sequential both in buyers and in items and for multidimensional
settings they assume a worst case ordering on the sequence of offers. [CMM11] considers various
settings with budget constraints. For selling k units of an item to unit demand buyers [CEDG+10]
and [Yan11] present sequential posted pricing mechanisms that obtain 1 − 1√

2πk
fraction of the

revenue of the optimal mechanism. Both of these mechanisms compute a reserve price for each
buyer and then serve them in decreasing order of reserve prices. It is crucial for these mechanisms

4Note that a rational buyer with no budget constraints never chooses the lottery option. Furthermore, a buyer
with submodular valuations and a budget constraint chooses the lottery option on at most one item, i.e., on the last
item for which she runs out of budget.

5Note that we use the term “sequential posted pricing” as a generic term. We use SIP to denote a specific form of
sequential posted pricing in which the order is not controlled or even known in advance by the mechanism
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to control the order in which buyers are served otherwise their revenue could be arbitrarily bad.
That is because the mechanism has less chance to offer an item to a buyer that is served later.
Unfortunately, their approach cannot be extended to multiple(heterogenous) items as it may no
longer be possible to find an ordering of buyers such that for every item the reserve prices be
decreasing. In general, the main problem with mechanisms that are sequential in buyers is that, as
the mechanism allocates items to buyers, the probability that it can sell to buyers that arrive later
decreases. We show that this problem can be addressed by a randomized strategy that ensures that
every buyer will have the same chance of being offered with an item regardless of their arrival order.
By using the same randomized strategy we obtain an improved bound on the prophet inequality for
the sum of k-choices. Prophet inequalities have been extensively studied in the past (e.g. [HK92]).

The best known bound for generalization to sum of k-choices was 1 − O(
√
ln k√
k

) by [HKS07] which

we improve to 1− 1√
k+3

.

4 The Magician’s Problem and Prophet Inequalities

In this section, we present an abstract online stochastic toy problem and also a near-optimal online
algorithm for it. This algorithm is the main ingredient for connecting single buyer mechanisms
together to form n-buyer mechanisms in section 5. We also use it to construct a gambler and prove
a generalized prophet inequality. It also has direct applications in online stochastic optimization
(see Appendix C). Roughly speaking, it can be used to construct online rounding algorithms for
online stochastic optimization problems in which online decisions are guided by an offline solution
for the expected instance. The following is the abstract description of the toy problem:

Definition 8 (The Magician’s Problem). A magician is presented with a series of boxes one by
one. There is a prize hidden in one of the boxes. He has k magic wands that can be used to open
the boxes. On each box is written a probability. If a wand is used on a box, it opens, but with at
most the written probability the wand breaks. Let qi denote this probability for the ith box. The
magician wishes to maximize the probability of obtaining the prize, but unfortunately the sequence
of boxes, written probabilities, and the box in which the prize is hidden have been arranged by a
villain and the magician has no prior information about them (not even the number of boxes). It
is given that

∑
i qi ≤ k and that the villain cannot make any changes once the game has started.

Note that the magician could fail to open a box either because he chose to skip the box or
because he ran out of magic wands before coming to the box. Therefore if he greedily tries to
open all boxes then the probability of having a magic wand left for the last box is minimized and
that is where the villain would put the prize. Observe that the villain puts the prize in the box
that has the minimum ex-ante probability of being opened. Therefore, in order for the magician
to obtain the prize with probability at least γ, he has to devise a strategy that guarantees an
ex-ante probability of at least γ for opening each box. Note that the nature of the prize or even
whether there is actually a prize does not affect the problem. It is easy to see the following strategy
ensures an ex-ante probability of at least 1

4 for opening each box: For each box randomize and use
a wand with probability 1

2 . But can we do better? By using standard concentration bounds, we can
construct an algorithm that makes a random decision for each box independently and ensures an

ex-ante probability of 1−O(
√
ln k√
k

) for opening each box and this is tight if we make an independent

decision for each box.6. Next we present an algorithm that can ensure an ex-ante probability of

6In fact, it can be shown that for any constant c if for each box we independently randomize and choose to open
the box with probability 1 − c√

k
then there are family of instances in which with a constant positive probability

(constant in k) we run out of magic wands before getting to the last box.
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at least 1 − 1√
k+3

for opening each box. This algorithm takes a parameter γ and tries to ensure

a minimum ex-ante probability of γ for opening each box. In Theorem 2, we show that for any
γ ≤ 1− 1√

k+3
this algorithm can indeed ensure that the ex-ante probability of opening each box is

at least γ. In section 5 we will use this algorithm extensively in constructing n-buyer mechanisms.

Algorithm 1 (γ-Conservative Magician).

• Construct a strategy table yij using the dynamic programs, that are presented below, in which
γ is a parameter that is given in advance. The strategy table can be constructed incrementally
as the boxes are revealed. Upon being presented with box i, if j is the number of magic wands
broken so far, do the following:

– If yji = 1 then open the box i.

– If yji = 0 then discard the box.

– Otherwise randomize and open the box with probability yji .

We use Yi as the indicator random variable which is 1 iff the magician chooses to open the
box i. The strategy table can be computed using the following dynamic programs:

yji =


1 i ≥ 1, 0 ≤ j < θi

(γ − φθi−1i )/(φθii − φ
θi−1
i ) i ≥ 1, j = θi

0 otherwise.

(DP.y)

θi = min{j|φji ≥ γ} (DP.θ)

φji =


1 i = 1, j = 0

yji−1qi−1φ
j−1
i−1 + (1− yji−1qi−1)φ

j
i−1 i ≥ 2, j ≥ 0

0 otherwise.

(DP.φ)

Note that computing yji only requires the knowledge of q1, · · · , qi−1 so in fact computing yji
and making a decision about box i can be done even before seeing the box.

Interpretation of γ-Conservative Magician(Alg. 1) The main idea of the algorithm is the
following: Upon arrival of the ith box, we open the box when we have many wands and discard
it when we have few wands and we do this in such a way that ensures the ex-ante probability of
opening each box at the time the game starts is at least γ. Formally: let Si be the random variable
that represents the number of magic wands broken prior to seeing the ith box. We identify the
smallest integer θi for which Pr[Si ≤ θi] ≥ γ. Now if we open the ith box only when we have broken
no more than θi wands and discard it if we have broken more than θi wands, we can guarantee
that the ex-ante probability of opening the ith box is at least γ. Furthermore, if Pr[Si ≤ θi] is
strictly more that γ, then in the event of Si = θi we can in fact randomize and choose to open the
box i with a probability which is strictly less than 1 and is just enough to ensure that the total
ex-ante probability of opening the ith box is γ. It can be verified that φji which is computed by the
dynamic program is a lower bound for Pr[Si ≤ j]. In fact, if q1, · · · , qi−1 are the exact probabilities
of breaking a wand for each of first i − 1 boxes then Pr[Si ≤ j] = φji . In order to prove that the
above strategy ensures that each box is opened with an ex-ante probability of at least γ, we need
to show that yji = 0 for all j ≥ k and all i. i.e., we need to show that the strategy table of the
magician does not instruct him to open a box if he has broken all of his k wands. In Theorem 2
we present a sufficient condition on γ that ensures yji = 0 for all j ≥ k and all i.
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Theorem 2 (γ-Conservative Magician). For any γ ≤ 1− 1√
k+3

, a γ-conservative magician guaran-

tees that each box is opened with an ex-ante probability at least γ. Furthermore, if qi are the exact
probabilities of breaking a wand then the γ-conservative magician opens each box with an ex-ante
probability exactly γ7

Definition 9 (γk). We define γk to be the largest probability such that for all k′ ≥ k, if
∑

i qi ≤ k′
then a γk-conservative magician can guarantee that each box is opened with probability at least γk.
By Theorem 2, we know that γk ≥ 1− 1√

k+3

Observe that γk is a non-decreasing function in k which is at least 1
2 (when k = 1) and approaches

1 as k gets larger. The next theorem shows that no other magician can do considerably better than
the γ-conservative magician. It also shows that the lower bound of 1− 1√

k+3
on γk is almost tight.

Theorem 3 (Optimal Magician). For any ε > 0, even the optimal magician cannot guarantee that

each box is opened with probability at least 1 − kk

ekk!
+ ε (i.e., no magician can guarantee it). Note

that 1− kk

ekk!
≈ 1− 1√

2πk
.

Next, we present a direct application of the conservative magician to a generalization of prophet
inequalities.

Definition 10 (Sum of k-Choices). A sequence of n random variables V1, · · · , Vn are presented to a
gambler one by one in an arbitrary order. The gambler knows n and the distribution of each random
variable in advance but not the order in which they are presented. Upon being presented with the
random variable Vi, the gambler observes the actual draw of Vi and he has to decide whether to
keep it or to discard it and this decision cannot be changed later. The gambler wants to select k of
the random draws from the sequence and his objective is to maximize the sum of the selected ones.
The prophet knows all the actual draws in advance so he chooses the k highest draws. We assume
that the order in which the random variables are presented to the gambler is fixed in advance and
does not change during the process.

[HKS07] showed that there is a gambler that guarantees at least 1 − O(
√
ln k√
k

) fraction of the

payoff of the prophet (in expectation) by using a non-decreasing sequence of k stopping rules
(thresholds) 8. In what follows, we construct a gambler that obtains at least 1− 1√

k+3
fraction of

the prophet’s payoff in expectation by using a conservative magician as a black box and using only
a single threshold.

Theorem 4 (Sum of k-Choices, Prophet Inequality). The following gambler obtains at least γk
fraction of the expected payoff of the prophet. To simplify the exposition assume that the distribution
of Vi do not have any point mass9

• Find the threshold τ such that
∑

i Pr[Vi > τ ] = k. This can be done by a binary search on τ .

• Use a γk-conservative magician with k magic wands. Upon seeing each Vi, create a box and
write qi = Pr[Vi > τ ] on the box and present it to the magician. If the magician chooses to
open the box and Vi > τ then select Vi and break the magician’s wand.

7In particular the fact that the probability of breaking a wand for the ith box is exactly qi conditioned on any
sequence of prior events implies that for each box the event of breaking a wand has to be independent of the sequence
of past events and independent of other boxes.

8A gambler with stopping rules τ1, · · · , τk works as follows: When presented with Vi, he selects it iff Vi ≥ τj+1

where j is the number of random draws selected so far.
9Our theorem holds with slight modifications if we allow point masses.
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5 From One Buyer to Many Buyers

In this section, we present two generic approaches for constructing n-buyer mechanisms by using
1-buyer mechanisms as black boxes. We assume the model that was explained in Def. 1. To apply
our generic construction, we assume that we have an α-approximate primary mechanism for each
buyer. Remember that according to Def. 2, an α-approximate primary mechanism for buyer i
consists of a primary mechanism Mi and a concave benchmark function Ri(·). Ri(q̄i) gives an
upper bound on the expected objective value of the optimal primary mechanism for buyer i when
restricted to allocate each item j with probability at most q̄ij . Furthermore, Mi(q̄i) obtains in
expectation at least α-fraction of Ri(q̄i). Notice that we require the benchmark functions to be
concave. To justify this requirement we present the following theorem.

Theorem 5. Consider any convex program of the form (CPR) in which u(·) is an arbitrary concave
function, gj(·) are arbitrary convex functions and X is an arbitrary convex set. Let R(q̄) denote the
optimal objective value of this program as a function of q̄ = (q̄1, · · · , q̄m). Then R(q̄) is concave.
Furthermore, both for welfare and for revenue and under any set of feasibility constraints for the
buyer (e.g., matroid constraints, budget constraints, etc), the allocation function of the optimal
primary mechanism can be interpreted as the solution of a convex program of this form such that
R(q̄) be the expected objective value of the optimal primary mechanism when restricted to allocate
the items with probabilities at most q̄1, · · · , q̄m.

maximize: u(x) (CPR)

∀j : gj(x) ≤ q̄j
x ∈ X

In Appendix A we present several approximation primary mechanisms along with their corre-
sponding benchmarks.

Next, we present two approaches for expanding primary mechanisms to n-buyer mechanisms.
The two approaches are quite similar however each one requires slightly different assumptions.
The basic idea is the following: In both approaches, we initially solve a convex program using the
benchmark functions to compute the approximately optimal probability of allocating a copy of item
j to buyer i for each i and j which we denote by q̄ij . The optimal objective value of the convex
program is an upper bound on the expected objective value of the optimal n-buyer mechanism.
Observe that if for each i we run Mi(q̄i) on buyer i independently of other buyers, there is a good
chance that we allocate more items than we actually have. The two mechanisms that we present
differ in the way they address this issue. Mech. 1 runs each primary mechanism independently
and then unallocates the over-allocated items at random while ensuring that each allocated item
will remain allocated with probability at least γ. Mech. 2 visits buyers in an arbitrary order (not
controlled by the mechanism) and it avoids over-allocating items by not offering some of the items
to some of the buyers at random while ensuring that each item can be presented to each buyer with
probability at least γ. The following is the convex program:

maximize:
∑
i

Ri(q̄i) (CPRN )

∀j :
∑
i

q̄ij ≤ kj

∀i,∀j : q̄ij ≥ 0
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Theorem 6. The optimal objective value of (CPRN ) is an upper bound on the expected objective
value of the optimal n-buyer BIC mechanism.

Mechanism 1 (γ-BIC-Expansion).

(I) Solve the convex program of (CPRN ) and let q̄ij denote an optimal assignment for it.

(II) For each buyer i ∈ 1 · · ·n: run the corresponding primary mechanism Mi(q̄i) on buyer i and
let Xi1, . . . , Xim and Pi denote the random variables for allocation and payment of Mi (i.e.,
Xij is an indicator random variable which is 1 iff Mi allocated a copy of item j to buyer
i). Furthermore, let q̂ij be the actual marginal probability of allocating item j to buyer i by
Mi(q̄i). Note that q̂ij ≤ q̄ij.

(III) For each item type j ∈ 1 · · ·m:

(a) Create a new instance of the γ-conservative magician (see Alg. 1) with kj magic wands.
This is the jth magician.

(b) For each i ∈ 1 · · ·n: create a box corresponding to Xij and write q̂ij on the box and
present it to the jth magician. Let Yij denote the indicator random variable which is 1
iff the magician chooses to open the box. Set X ′ij ← XijYij. If X ′ij = 1 then break the
magician’s wand.

(IV) For each buyer i ∈ 1 · · ·n: charge buyer i a payment of P ′i ← γPi and for each j ∈ 1 · · ·m,
allocate a copy of item j to buyer i iff X ′ij = 1.

In order for γ-BIC expansion to be a BIC mechanism, the valuations of each buyer should be
in the form of a weighted rank function of some matroid. Next, we define this formally:

Definition 11 (Valuations as Matroid Weighted Rank Functions). Valuations of a buyer for bun-
dles of items can be represented as a weighted rank function of a matroid if there is a matroid whose
ground set is the set of items and such that for any bundle S of items:

• If S is an independent set of the matroid, then the valuation of the buyer for S is just the
sum of her valuations for each item in S.

• If S is not an independent set, then the valuation of the buyer for S is equal to her valuation
of an independent subset S′ ⊂ S with the maximum valuation.

In particular, additive valuations with capacities, unit demand valuations, etc. can be represented
as matroid weighted rank functions 10.

Theorem 7 (γ-BIC-Expansion). SupposeM1, · · · ,Mn are α-approximate truthful (in expectation)
primary mechanisms. Assuming that the valuations of each buyer can be represented by a weighted
rank function of a matroid and assuming that we can compute the actual marginal probabilities of
allocation (i.e. q̂ij in Mech. 1) for each primary mechanism Mi, then for any parameter γ ∈ [0, γk]
the γ-BIC expansion (Mech. 1) is a BIC mechanism which is a γ · α-approximation of the optimal
n-buyer BIC mechanism.

Note that by Theorem 2, γk ≥ 1− 1√
k+3

so the above theorem implies that by using a γ-BIC-

expansion mechanism with γ = 1 − 1√
k+3

, we get at least (1 − 1√
k+3

)α fraction of the expected

objective value of the optimal n-buyer BIC mechanism.

10note that budget constraints are not part of the valuations.
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The assumption of being able to compute the actual marginal probability of allocation for each
Mi might be a strong requirement. Our next mechanism does not require neither this assumption
nor does it require the valuations to be in the form of matroid weighted rank functions. However
it requires a submodularity condition on the benchmark functions. The mechanism is as follows:

Mechanism 2 (γ-DSIC-Expansion).

(I) Solve the convex program of (CPRN ) and let q̄ij denote an optimal assignment for it.

(II) For each item j ∈ 1 · · ·m: create an instance of γ-conservative magician (see Alg. 1) with kj
magic wands.

(III) For each buyer i ∈ 1 · · ·n:

(a) For each j ∈ 1 · · ·m: write q̄ij on a box and present it to the jth magician. Let Yij denote
the indicator random variable which is 1 iff the magician opens the box. Set q̄′ij ← q̄ijYij.

(b) Run the mechanismMi(q̄
′
i) on buyer i and use its outcome as the final outcome for buyer

i. Furthermore, let Xi1, . . . , Xim denote the indicator random variables for allocation of
Mi(q̄

′
i) (i.e., Xij is 1 iff Mi allocated a copy of item j to buyer i).

(c) For each j ∈ 1 · · ·m: if Xij = 1 then break the wand of the jth magician.

Definition 12 (Submodularity). A set function f : {0, 1}m → R is submodular iff f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ). However, throughout this paper we use the following extended definition of
submodularity: A function f : [0, 1]m → R is submodular iff the function Sf : {0, 1}m× [0, 1]m → R,
as defined next, is submodular in its first argument. We define Sf (S, x) = f(x′) in which for each
j: if j ∈ S then x′j = xj else x′j = 0.

Theorem 8 (γ-DSIC-Expansion). Suppose M1, · · · ,Mn are α-approximate truthful (in expecta-
tion) primary mechanisms. If all benchmark functions Ri(·) are submodular then for any parameter
γ ∈ [0, γk] the γ-DSIC expansion (Mech. 2) is a DSIC mechanism which is a γ · α-approximation
of the optimal n-buyer BIC mechanism.

Observe that to use γ-DSIC expansion we do not need to compute the exact marginal probability
of allocation for eachMi and we do not need to make any assumption on the valuations of buyers.
The only requirement is that the benchmark functions be submodular.

An interesting implication of Theorem 8 is the following theorem.

Theorem 9. Suppose M1, · · · ,Mn are α-approximate primary IP mechanisms that approximate
the optimal primary IP mechanisms for the corresponding buyers. If all benchmark functions Ri(·)
are submodular then for any parameter γ ∈ [0, γk] the γ-DSIC expansion (Mech. 2) is a SIP
mechanism which is a γ · α-approximation of the optimal n-buyer AIP mechanism.

Observe that the space of primary AIP mechanisms collapses to the space of primary IP mech-
anisms because a primary mechanism considers only a single buyer. Note that a primary IP
mechanism simply computes a distribution of prices for items and draws the prices from that dis-
tribution. On the other hand, if we expand primary IP mechanisms to an n-buyer mechanism
using the γ-DSIC expansion, the resulting mechanism is SIP but it approximates the optimal AIP
mechanism.

Remark 1. The γ-DSIC expansion (Mech. 2) assumes no control or prior information about the
order in which buyers are visited. The order specified in the mechanism is arbitrary and could be
replaced by any other ordering which does not even need to be known to the mechanism.
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6 Conclusion

In this paper, for Bayesian combinatorial auctions, we presented a reduction from n-buyer mecha-
nisms to 1-buyer mechanisms. This shows that the inherent difficulty of designing Bayesian mecha-
nisms in multidimensional settings does not stem from the problem of making coordinated decisions
for all buyer, but instead it stems from the difficulty of aligning the behavior of the mechanism
with the incentives of each individual buyer even in the absence of other buyers.

7 Acknowledgment

I thank Jason Hartline for many helpful suggestions and comments and Azarakhsh Malekian for
a fruitful discussion that lead to the proof of the sand theorem (Theorem 17) and many other
suggestions. The current exposition of the magician’s problem (Def. 8) was suggested by Jason
Hartline, the original exposition used a gambler with k tokens where the tokens could be used to
open the boxes.

References

[Arm96] Mark Armstrong. Multiproduct nonlinear pricing. Econometrica, 64(1):51–75, January
1996.

[BGGM10] Sayan Bhattacharya, Gagan Goel, Sreenivas Gollapudi, and Kamesh Munagala. Bud-
get constrained auctions with heterogeneous items. In STOC, pages 379–388, 2010.

[BH08] Liad Blumrosen and Thomas Holenstein. Posted prices vs. negotiations: an asymptotic
analysis. In ACM Conference on Electronic Commerce, page 49, 2008.

[BLP06] Moshe Babaioff, Ron Lavi, and Elan Pavlov. Single-value combinatorial auctions and
implementation in undominated strategies. In SODA, pages 1054–1063, 2006.

[BR89] Jeremy Bulow and John Roberts. The simple economics of optimal auctions. Journal
of Political Economy, 97(5):1060–90, October 1989.

[CEDG+10] Tanmoy Chakraborty, Eyal Even-Dar, Sudipto Guha, Yishay Mansour, and
S. Muthukrishnan. Approximation schemes for sequential posted pricing in multi-
unit auctions. In WINE, 2010.

[CHMS10] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan.
Multi-parameter mechanism design and sequential posted pricing. In STOC, pages
311–320, 2010.

[CMM11] Shuchi Chawla, David Malec, and Azarakhsh Malekian. Bayesian mechanism design
for budget-constrained agents. In ACM Conference on Electronic Commerce, 2011.

[DRY10] Peerapong Dhangwatnotai, Tim Roughgarden, and Qiqi Yan. Revenue maximization
with a single sample. In ACM Conference on Electronic Commerce, pages 129–138,
2010.

[GKS02] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy 0002, and Aravind Srinivasan.
Dependent rounding in bipartite graphs. In FOCS, pages 323–332, 2002.

11



[HK92] Theodore P. Hill and Robert P. Kertz. A survey of prophet inequalities in optimal
stopping theory. In Contemporary Mathematics, 1992.

[HKM11] Jason D. Hartline, Robert Kleinberg, and Azarakhsh Malekian. Bayesian incentive
compatibility and matchings. In SODA, 2011.

[HKS07] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and Tuomas Sandholm. Au-
tomated online mechanism design and prophet inequalities. In AAAI, pages 58–65,
2007.

[HR09] Jason D. Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In ACM
Conference on Electronic Commerce, pages 225–234, 2009.

[Mye81] Roger B. Myerson. Optimal auction design. 1981.

[Yan11] Qiqi Yan. Mechanism design via correlation gap. In SODA, 2011.

A Primary Mechanisms

In this section, we present several approximation primary mechanisms. Note that a primary mech-
anism as defined in Def. 2 only considers a single buyer. Once we construct a primary mechanism,
we can use one of the generic expansions of section 5 to convert it to a mechanism for many in-
dependent buyers. Except for subsection A.1, for the rest of this section we restrict the space of
mechanisms to AIP mechanisms. Note that a primary AIP mechanism is simply an IP mechanism.
In other words, a primary AIP mechanism simply chooses a price distribution irrespective of the
type of the buyer and then draws the prices of items from that distribution and offers them to
the buyer. Since for primary mechanisms AIP and IP are the same we will simply refer to these
primary mechanisms as primary IP mechanisms. However, by Theorem 9, the γ-DSIC expansion
of α-approximate primary IP mechanisms is a SIP mechanism that is a γ · α approximation of the
optimal n-buyer AIP mechanism.

A.1 Correlated Valuations with Capacity and Hard Budget Constraints

In this subsection, we consider a single buyer with correlated valuations for different items and
with polynomially bounded number of types. For each possible type t of buyer, let vtj denote her
valuation for item j. Also let f(t) denote the probability that the buyer is of type t. Furthermore,
suppose that the buyer has a total budget of B and is interested in at most C items. We assume
that the only private information of the buyer is her type and everything else is publicly known.
Note that this is exactly the setting considered in [BGGM10]. Next, we present a 1-approximate
(i.e., optimal) truthful primary mechanism for maximizing revenue in this setting.

Consider the following LP in which xtj is the probability of allocating item j when the buyer
has reported type t and pt is her payment. The optimal objective value of this LP is an upper
bound on the revenue of the optimal primary mechanism when it is restricted to allocate each item
j with probability at most q̄j :

12



maximize:
∑
t

f(t)pt (LPrev)

∀j :
∑
t

f(t)xtj ≤ q̄j

∀t :
∑
j

xtj ≤ C

∀t, t′ :
∑
j

vtjxtj − pt ≥
∑
j

vtjxt′j − pt′

∀t,∀j : xtj ∈ [0, 1]

∀t : pt ∈ [0, B]

We construct the primary mechanism as follows:

Mechanism 3.

• Define the benchmark R(q̄) to be the optimal objective value of (LPrev) as a function of
q̄ = (q̄1, · · · , q̄m).

• Given q̄1, · · · , q̄m, solve the linear program of (LPrev) to compute xtj and pt.

• If the buyer reported her type as t then charge her a payment of pt and allocate each item j
with probability xtj as follows: Use the dependent randomize rounding algorithm of [GKS02]
to round each xtj to either 0 or 1 such that if Xj is the result of rounding the xtj then
E[Xj ] = xtj and such that

∑
j Xj ≤ C. Then, for each j allocate a copy of item j to the

buyer iff Xj = 1.

Theorem 10. The primary mechanism Mech. 3 is a 1-approximate truthful primary mechanism
for revenue and it satisfies all requirements of γ-BIC expansion.

Proof. The proof of truthfulness and optimality of Mech. 3 trivially follows from the (LPrev). So,
we only focus on proving that this mechanism satisfies the requirements of Theorem 7 for γ-BIC
expansion. First, observe that the benchmark function, R(q̄), is concave (this follows by applying
Theorem 5). Second, observe that the valuations of the buyer can be represented as a weighted
rank function of a uniform matroid of rank C. Third, notice that given q̄1, · · · , q̄m, we can compute
the exact marginal probabilities of allocation, i.e. q̂1, · · · , q̂m as follows: q̂j =

∑
t xtj . So the

mechanism Mech. 3 and its associated benchmark satisfy the requirements of Theorem 7 for γ-BIC
expansion.

Observe that if we replace the objective function of (LPrev) with
∑

t,j f(t)vtjxtj we get a 1-
approximate truthful primary mechanism for welfare instead of revenue.

A.2 Single-Item with Hard Budget Constraints

In this subsection, we consider a single buyer who is interested in at most one copy of an indivisible
item and has a publicly known budget B. Her only private information is her valuation for the
item which is drawn from a publicly known distribution with CDF F (·). To avoid complicating the
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proofs, we assume that F (·) is continuous and strictly increasing in its domain11. We restrict the
space of mechanisms to IP mechanisms. Next, we present a 1-approximate (i.e., optimal) primary
IP mechanism for maximizing revenue in this setting. We start by defining the modified CDF
function FB(·) as follows:

FB(v) =

{
F (v) v ≤ B
1− (1− F (v))Bv v ≥ B

(FB)

Intuitively, 1− FB(p) is the probability of allocating the item to the buyer if we offer the item
at price p. Note that the buyer only buys if her valuation is more than p which happens with
probability 1 − F (p) .If p > B then she will pay her whole budget and only get the item with
probability B

p . Observe that if we want to allocate the item with probability q we can offer a price

of FB(−1)(1 − q) in which case it can be easily verified that we get a revenue of q · FB(−1)(1 − q)
in expectation. Now define the function H(q) = q · FB(−1)(1− q) and let Ĥ(q) denote its concave
closure (i.e., the smallest concave function that is an upper bound on H(q) for every q). We address
the problem of efficiently computing Ĥ(q) later in Lem. 1. Next, we show that the revenue of the
optimal primary IP mechanism when restricted to allocate the item with probability at most q̄ is
no more than the optimal objective value of the following convex program:

maximize: Ĥ(q) (CPrev−1)

q ≤ q̄
q ≥ 0

Theorem 11. The revenue of the optimal primary IP mechanism, when restricted to allocate
the item with probability at most q̄, is equal to the optimal objective value of the convex program
(CPrev−1). Furthermore, assuming that q∗ is the optimal assignment for the convex program, if

Ĥ(q∗) = H(q∗) then the optimal primary IP mechanism uses a single price p = FB(−1)(1 − q∗)
otherwise, it randomizes between two prices but the probability of allocation is still q∗.

Proof. First we prove that the expected revenue of the optimal primary IP mechanism which we
denote by R∗ is upper bounded by Ĥ(q∗). Then we construct a distribution over prices that obtains
this revenue. Note that any primary IP mechanism can be specified as a distribution over prices.
Let P be the optimal price distribution. So R∗ = Ep∼P [p(1 − FB(p))]. Note that every price p
corresponds to an allocation probability q = 1 − FB(p). So any probability distribution over p
can be specified as a probability distribution over q. Let Q denote the probability distribution
over q that corresponds to price distribution P, then we can write R∗ = Eq∼Q[q · FB(−1)(1− q)] =

Eq∼Q[H(q)] ≤ Eq∼Q[Ĥ(q)] also notice that by Jensen’s inequality this is less than or equal to

Ĥ(Eq∼Q[q]). Note that Eq∼Q[q] is exactly the probability of allocating the item if we use the price
distribution P so it must be no more than q̄ which implies that Eq∼Q[q] is a feasible assignment for

(CPrev−1) and therefore Ĥ(Eq∼Q[q]) ≤ Ĥ(q∗) which completes the first part of the proof. Next,

we construct the optimal price distribution: If Ĥ(q∗) = H(q∗) then the optimal price distribution

is just a single price p = FB(−1)(1− q∗). Otherwise, by definition of concave closure, there are two
points q− and q+ and θ ∈ (0, 1) such that q∗ = θq−+(1−θ)q+ and Ĥ(q∗) = θH(q−)+(1−θ)H(q+).
In this case the optimal price distribution offers price p− with probability θ and offers price p+

with probability 1− θ.
11The proofs can be modified to work without this assumption.
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We construct the optimal revenue maximizing primary IP mechanism as follows:

Mechanism 4.

• Define the benchmark R(q̄) to be the optimal objective value of (CPrev−1) as a function of q̄.

• Given q̄, solve the convex program of (CPrev−1) to compute the optimal q.

• Using the optimal q compute the optimal price as follows: if Ĥ(q) = H(q) then offer the single

price p = FB(−1)(1− q) otherwise randomize between two prices p− and p+ with probabilities
θ and 1− θ as explained in the proof of Theorem 11.

Theorem 12. Mech. 4 is the optimal revenue maximizing primary IP mechanism. Furthermore,
this mechanism satisfies the requirements of DSIC-expansion.

Proof. The proof of the optimality of the mechanism follows from Theorem 11. Furthermore,
the benchmark function, R(q̄), is concave (this follows by applying Theorem 5) and it is trivially
submodular and so it meets the requirements of DSIC expansion.

Now we get back to the problem of efficiently computing Ĥ(·):

Lemma 1. A (1 + ε)-approximation of Ĥ(·) which we denote by Ĥ1+ε(·) can be constructed using
a piece-wise linear function with ` = logL

log(1+ε) pieces and in time O(` log `) in which L is the ratio
of the maximum valuation to minimum non-zero valuation. Note that we need at least log2 L bits
just to represent such valuations so this construction is polynomial in input size for constant ε.

Proof. WLOG, assume that all possible non-zero valuations of the buyer are in range [1, L]. Let
` = b logL

log(1+ε)c. For r = 0 · · · `, consider the prices pr = (1 + ε)`−r and compute the corresponding

qr = 1− FB(pr). Construct Ĥ1+ε(·) by constructing the convex hall of the points:
(0, 0), (q1, p1q1), (q2, p2q2), · · · , (q`, p`q`), (1, 0). This can be done in time O(` log `). Note that

p = FB(−1)(1 − q) is a decreasing function of q so at every point q ∈ [qr, qr+1], the corresponding

price is FB(−1)(q) ∈ [pr+1, pr] but pr = (1 + ε)pr+1 therefore at every point q: H1+ε(q) ≤ Ĥ(q) ≤
(1 + ε)H1+ε(q) which completes the proof.

Remark 2. In order to use Ĥ1+ε(·) in Mech. 4, we need to use (1+ε)Ĥ1+ε(·) in the objective func-
tion of the (CPrev−1) instead of Ĥ(·) for computing the benchmark. Furthermore, the mechanism
will be a (1− ε)-approximation of the optimal primary IP mechanism. Also notice that finding p−

and p+ by using the Ĥ1+ε(·) is trivial.

A.3 Additive Independent Valuations with Hard Budget Constraints

In this subsection, we consider m indivisible items and a single buyer with a publicly known budget
B who has additive valuations for bundles of items (i.e., her valuation for a bundle of items is the
sum of her valuations for individual items in the bundle). We assume that for each item j, the
buyer’s valuation is drawn independently from a publicly known distribution with CDF Fj(·). To
avoid complicating the proofs, we assume that each Fj(·) is continuous and strictly increasing in its
domain12. Next, we present a (1− 1

e )-approximate primary IP mechanism for maximizing revenue
in this setting. As in subsection A.2, we start by defining the modified CDF function FB

j (·) for
each item j as follows:

12The proofs can be modified to work without this assumption.
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FB
j (v) =

{
Fj(v) v ≤ B
1− (1− Fj(v))Bv v ≥ B

(FB
j )

Furthermore, for each item j, let Hj(q) = q · FB
j
−1(1 − q) and let Ĥj(·) be its concave closure

as in subsection A.2. Similarly, for each j, define Rj(q̄j) to be the optimal objective value of the
following convex program as a function of q̄j .

maximize: Ĥj(q) (CPrev−j)

q ≤ q̄j
q ≥ 0

The next theorem presents an upper bound on the revenue of the optimal primary IP mechanism.

Theorem 13. The revenue of the optimal primary IP mechanism, when restricted to allocate items
with probabilities at most q̄1, · · · , q̄m, is no more that min(

∑
j Rj(q̄j), B).

Proof. For any j if we were only to sell the item j, by Theorem 11, the maximum revenue we could
get using an IP primary mechanism would be Rj(q̄j). Now observe that if we compute the optimal
price distribution for each item separately, we might only get less revenue because the budget is
shared among all items and the buyer might not be able to buy some of the items that she would
otherwise buy if there were no other items. That means the actually probability of allocating each
item j would then be less than q̄j . So the optimal joint price distribution might sell at lower prices
but the extra revenue will only come from buyers of lower type who were excluded by the optimal
primary mechanism of each individual item so the overall revenue from each item j cannot be more
than R(q̄j). Finally, observe that the expected revenue of the mechanism cannot be more that B
so min(

∑
j Rj(q̄j), B) is an upper bound on the revenue of the optimal primary IP mechanism.

Next, we present a (1− 1
e )-approximate primary IP mechanism for maximizing revenue.

Mechanism 5.

• Define the benchmark R(q̄) = min(
∑

j Rj(q̄j), B).

• Given q̄, solve the convex program of (CPrev−j) for each item j. Let qj denote the optimal
assignment for the convex program of item j.

• Using the optimal q1, · · · , qn compute the prices as follows: for each item j if Ĥj(qj) = Hj(qj)

then offer the single price pj = FB
j
(−1)(1 − qj) otherwise randomize between two prices p−j

and p+j with probabilities θj and 1 − θj, as explained in the proof of Theorem 11. Note that
the randomization is done for each item independently.

Theorem 14. Mech. 5 obtains at least 1 − 1
e fraction of the revenue of the optimal primary IP

mechanism. Furthermore, this mechanism satisfies the requirements of DSIC-expansion.

Proof. First, we show that Mech. 5 obtains at least 1− 1
e fraction of its benchmark R(q̄) which by

Theorem 13 is an upper bound on the revenue of the optimal primary IP mechanism. Consider an
imaginary replica of the original buyer who has exactly the same valuations as the original buyer
but has a separate budget B for each item. We call this imaginary buyer the “jumbo replica”.
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Furthermore, suppose that any payment received from the jumbo replica beyond B is lost (i.e., if
the jumbo replica pays Z the mechanism receives only min(Z,B)). Observe that for any assignment
of prices, the payment received from the original buyer and the payment received from the jumbo
replica are exactly the same because if the original buyer has’t hit his budget limit then both the
original buyer and the jumbo replica will buy the same items and pay the exact same amount.
Otherwise, if the original buyer hits his budget limit, then the mechanism receives exactly B from
both the original buyer and the jumbo replica. So we only need to show that the revenue received
from the jumbo replica by using the price distribution of Mech. 5 is at least 1− 1

e of R(q̄). Observe
that from the view point of the jumbo replica there is no connection between different items so
he makes a decision for each item independently. Let Zj be the random variable that denotes
the amount paid by the jumbo replica for item j using the price distribution of Mech. 5. By
Theorem 11, we know that E[Zj ] = Rj(q̄j) and the total revenue received by the mechanism is
Z = min(

∑
j Zj , B). Notice that Z1, · · · , Zm are independent random variables in the range [0, B].

By applying the Lem. 2, we can conclude that E[min(
∑

j Zj , B)] ≥ (1 − 1
e ) min(

∑
j E[Zj ], B) =

(1 − 1
e )R(q̄) which proves our claim. Next, we show that Mech. 5 satisfies the requirements of

DSIC-expansion: observe that all Rj(·) are concave so R(q̄) is also concave. Furthermore, R(q̄)
is submodular according to the Def. 12 because the function SR(S, q̄) = min(

∑
j∈S Rj(q̄j), B) is

submodular in S. Therefore, Mech. 5 meets the requirements of DSIC-expansion.

Lemma 2. Let B be an arbitrary positive number and let Z1, · · · , Zm be independent random
variables such that for each j: Zj ∈ [0, B]. Then:

E[min(
∑
j

Zj , B)] ≥ (1− 1

e(
∑
j E[Zj ])/B

)B ≥ (1− 1

e
) min(

∑
j

E[Zj ], B)

A.4 Unit Demand Independent Valuations

In this subsection, we considerm indivisible items and a single unit demand buyer (i.e., her valuation
for a bundle of items is the maximum of her valuations for individual items in the bundle). We
assume that for each item j, the buyer’s valuation is drawn independently from a publicly known
distribution with CDF Fj(·). To avoid complicating the proofs, we assume that each Fj(·) is
continuous and strictly increasing in its domain. Furthermore, we require the distributions to be
regular. Next, we present a primary mechanism that obtains at least 1

2 -fraction of the revenue of
the optimal primary IP mechanism in this setting. Note that this is the same setting considered in
[CHMS10] except for the regularity assumption for distributions.

Our approach is similar to subsection A.2. For each item j, define Hj(q) = q · F−1j (1 − q).

Because Fj(·) is the CDF of a regular distribution the function Hj(·) and its concave closure Ĥj(·)
are the same (i.e., Hj(·) is concave itself). This is shown by the following lemma.

Lemma 3. If F (·) is the CDF of a regular distribution then the function H(q) = q · F−1(1− q) is
concave.

Proof. To show that H(q) is concave it is enough to show that ∂
∂qH(q) is non-increasing in q. But

∂
∂qH(q) = F−1(1 − q) − q

f(F−1(1−q)) in which f(·) is the PDF corresponding to F (·). Now if we

substitute q = 1 − F (p) then it is enough to show that the resulting function is non-decreasing in

p because q is itself non-increasing in p. However, by this substitution we get ∂
∂qH(q) = p− 1−F (p)

f(p)
which is non-decreasing in p by definition of regularity.
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Intuitively, Ĥj(qj) is the maximum revenue that can be obtained by a mechanism that allocates
item j with probability qj . Next, we show that the revenue of the optimal primary IP mechanism
when restricted to allocate the items with probabilities at most q̄1, · · · , q̄m is no more than the
optimal objective value of the following convex program:

maximize:
∑
j

Ĥj(qj) (CPrev−u)

∀j : qj ≤ q̄j∑
j

qj ≤ 1

∀j : qj ≥ 0

Theorem 15. The revenue of the optimal primary IP mechanism, when restricted to allocate the
items with probabilities at most q̄1, · · · , q̄m, is upper bounded by the optimal objective value of the
convex program (CPrev−u).

Proof. Let q∗1, · · · , q∗m be the probabilities of allocating the items to the buyer by the optimal
primary IP mechanism. For each item j, the expected revenue that can be obtained if item j is
allocated with probability q∗j is upper bounded by Ĥj(q

∗
j ) (the proof of this claim is essentially

the same as the proof of Theorem 11). Therefore, the expected revenue of the optimal primary
IP mechanism cannot be more that

∑
j Ĥj(q

∗
j ). Furthermore, observe that q∗ is a feasible solution

for the convex program (CPrev−u) because the optimal primary mechanism never allocates more
than one item so

∑
j q
∗
j ≤ 1 and also for each j it must be that q∗j ≤ q̄j . Therefore, the revenue of

the optimal primary IP mechanism cannot be more that the optimal objective value of the convex
program.

Next, we construct a 1
2 -approximate primary IP mechanism as follows:

Mechanism 6.

• Define the benchmark R(q̄) to be the optimal objective value of (CPrev−u) as a function of q̄.

• Given q̄, solve the convex program of (CPrev−u) and let q denote the optimal assignment of
the convex program.

• For each item j: assign the price pj = F−1j (1 − qj). WLOG, assume that items are labeled
such that p1 ≤ · · · ≤ pm.

• For each item j, define rj = max(qjpj + (1 − qj)rj+1, rj+1) and let rm+1 = 0. Let T be the
subset of items defined as follows: T = {j|pj ≥ rj}. Only offer the items in T at prices
computed in the previous step (i.e., set the price of other items to infinity).

Theorem 16. Mech. 6 obtains at least 1
2 fraction of the revenue of the optimal primary IP mech-

anism. Furthermore, this mechanism satisfies the requirements of DSIC-expansion.

Proof. First, we show that Mech. 5 obtains at least 1
2 fraction of its benchmark R(q̄) which by

Theorem 15 is an upper bound on the revenue of the optimal primary IP mechanism. Observe
that in Mech. 6, R(q̄) =

∑
j qjpj and notice that qj is exactly the probability that the valuation

of the buyer for item j is at least pj . Now consider a replica of the buyer which has the exact
same valuations as the original buyer but who always buys the item with the lowest price among
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the items that are priced below her valuation. We call this imaginary replica the “malevolent
replica”. Notice that for any assignment of prices the revenue obtained from the malevolent replica
is a lower bound on the revenue obtained from the original buyer. So it is enough to show that
the mechanism obtains a revenue of at least 1

2

∑
j qjpj from the malevolent replica. Observe that

rj as defined in Mech. 6 is exactly the expected revenue obtained from the malevolent replica by
offering the items T ∩ {j, · · · ,m}. Basically, the item j is offered (i.e., j ∈ T ) iff pj ≥ rj which
also implies that rj = qjpj + (1 − qj)rj+1. Otherwise, item j is not offered at all and rj = rj+1.
Note that if we only offer the items in T ∩ {j, · · · ,m} and if j ∈ T then the malevolent replica
buys item j with probability qj and generates a revenue of pj otherwise with probability 1 − qj
a revenue of rj+1 is obtained from items in T ∩ {j + 1, · · · ,m}. Now observe that the expected
revenue obtained from the malevolent replica by Mech. 6 is exactly r1. By applying Lem. 4 we
conclude that r1 ≥ 1

2

∑
j pjqj which completes the proof of the first claim. Next, we show that this

mechanism satisfies the requirements of DSIC expansion. Observe that by Theorem 5, the optimal
objective value of (CPrev−u) is a concave function of q̄1, · · · , q̄m so the benchmark function R(q̄) is
concave. Now it only remains to show that R(q̄) is also submodular according to Def. 12.

Lemma 4. Let p1, · · · , pm and q1, · · · , qm be a two sequences of non-negative real numbers and
suppose

∑
j qj ≤ 1. For each j = 1 · · ·m define rj = max(qjpj + (1 − qj)rj+1, rj+1) and let

rm+1 = 0. Then r1 ≥ 1
2

∑
j qjpj.

B The Proof of Theorem 2

In this section, we present the proof of Theorem 2. We prove the theorem in two parts. First we
show that, assuming the γ-conservative magician has infinitely many magic wands, the dynamic
programming based strategy of Alg. 1 indeed guarantees that each box is opened with probability
at least γ. The second part, which is the challenging part, is to show that for any γ ≤ 1− 1√

k+3
the

strategy table of the γ-conservative magician never instructs him to open a box if he has broken
all of his k magic wands. In other words, we show that if γ ≤ 1 − 1√

k+3
then yji = 0 for every

j ≥ k and every i. We should emphasis that it is not possible to get a bound of better than

1 − O(
√
ln k√
k

) by using ordinary concentration bounds or martingale inequalities. Furthermore, in

Theorem 3 we show that it is not possible to guarantee that each box is opened with probability
at least 1− 1√

2πk
+ ε, so the bound of 1− 1√

k+3
is almost tight.

Part 1: We show that if the γ-conservative magician has infinitely many magic wands then the
strategy table of Alg. 1 indeed ensures that each box is opened with probability at least γ. Below,
we repeat the dynamic program for computing the strategy table:

yji =


1 i ≥ 1, 0 ≤ j < θi

(γ − φθi−1i )/(φθii − φ
θi−1
i ) i ≥ 1, j = θi

0 otherwise.

(DP.y)

θi = min{j|φji ≥ γ} (DP.θ)

φji =


1 i = 1, j = 0

yji−1qi−1φ
j−1
i−1 + (1− yji−1qi−1)φ

j
i−1 i ≥ 2, j ≥ 0

0 otherwise.

(DP.φ)
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Part 1(a): First we prove that Pr[Si ≤ j] ≥ φji by induction on i. The base case i = 1 is trivial.
For i > 1:

Pr[Si ≤ j] ≥ Pr[Si−1 ≤ j − 1] + Pr[Si−1 = j](1− yji−1qi−1)

= Pr[Si−1 ≤ j − 1]yji−1qi−1 + Pr[Si−1 ≤ j](1− yji−1qi−1)

≥ φj−1i−1y
j
i−1qi−1 + φji−1(1− y

j
i−1qi−1) by induction hypothesis

= φji by (DP.φ)
(1.a)

Observe that all of the above inequalities are met with equality if each qi is the exact probability
of breaking a magic wands for box i and not just an upper bound.

Part 1(b): Next, we show that Pr[Yi = 1] ≥ γ:

Pr[Yi = 1] =
∑
j

Pr[Yi = 1|Si = j]Pr[Si = j]

=

θi∑
j=0

yjiPr[Si = j]

= Pr[Si ≤ θi − 1] + yθii Pr[Si = θi] because yji = 1 for j < θi

= (1− yθii )Pr[Si ≤ θi − 1] + yθii Pr[Si ≤ θi]
≥ (1− yθii )φθi−1i + yθii φ

θi
i by (1.a)

= φθi−1i + yθii (φθii − φ
θi−1
i )

= γ by substituting yθii from (DP.y)

Observe that all of the above inequalities are met with equality if each qi is the exact probability
of breaking a magic wand for box i and not just an upper bound.

Part 2: Next, we show that when γ ≤ 1− 1√
k+3

, the γ-conservative magician never tries to open

a box after breaking k magic wands. In other words, we show that yji = 0 for every j ≥ k and
every i, in the strategy table that he computes using the dynamic program (DP.y).

Instead of proving the claim directly, we present a stochastic process on an infinite tape with one
unit of infinitely divisible sand and a barrier. Then we establish the connection between this process
and the strategy table of the magician. Furthermore, we prove a theorem about this stochastic
process and use it to prove second part of the theorem. The process is as follows.

Definition 13 (The Sand/Barrier Process).

• A parameter γ ∈ (0, 1) and a sequence of probabilities q1, · · · , qn are given as the input, such
that

∑
i qi ≤ k.

• There is a tape of infinite length, one unit of infinitely divisible sand, and a barrier. Initially,
the barrier is at position 1 on the tape and all the sand is at position 0 (on the left of the
barrier). During the process, we gradually move the sand and the barrier to right, distributing
the sand over the tape, but never crossing the barrier. The barrier is moved one position to
the right whenever the amount of sand on the barrier increases to more than 1 − γ. The
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process runs in n rounds. For each round i let λi denote the position of the barrier at the
beginning of round i, and for each j let sji denote the amount of sand at position j at the

beginning of round i. Initially, λ1 = 1 and s01 = 1 and sj1 = 0 for all j > 0. During each
round i we do the following.

– We select a fraction of the sand from each position to the left of the barrier such that the
total amount of selected sand is exactly γ. Note that we can always do this because the
amount of sand that is on the barrier is no more than 1−γ, so the rest of the sand must
be to the left of the barrier. Let yji ∈ [0, 1] denote the fraction of the sand on position j
that gets selected. We start selecting all the sand greedily from left to right until the total
amount selected is γ. In other words, for some index θi we have yji = 1 for all j < θi
and yji = 0 for all j > θi, such that

∑
j y

j
i s
j
i = γ.

– We then move qi fraction of the selected sand as follows: for each j we move qi fraction
of the sand that was selected from position j to j + 1, we do this simultaneously for all
positions (i.e. the amount of sand that is moved to j + 1 is exactly yji s

j
i qi).

– If the total amount of sand on the barrier is more than 1− γ then we move the barrier
one position to the right (i.e., to position λi + 1).

Let φji =
∑j

r=0 s
r
i be the total amount of sand in positions 0, · · · , j at the beginning of round

i. Observe that by the above process we have:

φji = φj−1i−1 + (1− yji−1qi−1)(φ
j
i−1 − φ

j−1
i−1 )

= yji−1qi−1φ
j−1
i−1 + (1− yji−1qi−1)φ

j
i−1

Notice that the state of the process defined above can be computed using exactly the same
dynamic program that was used to compute the strategy table of the γ-conservative magician.
Furthermore, in order to show that yji = 0 for every j ≥ k and every i, it is enough to show that
the barrier is never moved past position k on the tape. Next, we present a theorem which is the
main step of the proof and is also interesting on its own.

Theorem 17 (Sand/Barrier). Throughout the process defined in Def. 13, the average distance of
the sand from the barrier is strictly less than 1

1−γ . In particular, at the beginning of round i this

distance is strictly less than 1−γλi
1−γ , and this is true for any sequence of probabilities q1, · · · , qn,

regardless of how big
∑

i qi is.

We use the above theorem to derive a sufficient condition on γ that ensures the barrier is never
moved past position k. At the beginning of round i, let di denote the average distance of the sand
from the origin and d′i denote the average distance of the sand from the barrier. Observe that
λi = di + d′i. Furthermore, notice that di = γqi−1 + di−1, in other words, the average distance of
the sand from the origin is increased exactly by γqi−1 during round i − 1 (because the amount of
selected sand is exactly γ and qi−1 fraction of the selected sand is moved one position to the right).
So we get the following inequality.

λi = di + d′i <
i−1∑
r=1

qrγ +
1− γλi
1− γ

≤ kγ +
1− γλi
1− γ
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Next, we present another inequality that contradicts the above inequality for λi = k + 1,
therefore if we can show that the following inequality always holds then the barrier can never move
past position k because if it moves to position k + 1 then the above inequality and the following
inequality contradict each other.

k + 1 ≥ kγ +
1− γk+1

1− γ
(Λ)

Instead of the above inequality, we can consider the stronger inequality k+ 1 ≥ kγ+ 1
1−γ which

is quadratic in γ and can be solved to get a bound of γ ≤ 1 − 1

1/2+
√
k+1/4

. This bound is in fact

a weaker condition than γ ≤ 1 − 1√
k+3

when k ≥ 7. It can also be verified that for k < 7 and

γ ≤ 1− 1√
k+3

the inequality (Λ) holds. That completes the proof of Theorem 2.

Next, we present the proof of the sand theorem:

Proof of Theorem 17. First, we show that throughout the process of Def. 13, the following invariant
holds:

∀i,∀j ∈ [1, λi − 1] : φj−1i < γφji (φineq)

We prove this by induction on i. The base case of the induction is trivial. For i ≥ 2:

φji = φj−1i−1 + (1− yji−1qi−1)(φ
j
i−1 − φ

j−1
i−1 )

≥ φj−1i−1 + (1− yj−1i−1 qi−1)(φ
j
i−1 − φ

j−1
i−1 ) because yji is non-increasing in j

= yj−1i−1 qi−1φ
j−1
i−1 + (1− yj−1i−1 qi−1)φ

j
i−1

> yj−1i−1 qi−1
1

γ
φj−2i−1 + (1− yj−1i−1 qi−1)

1

γ
φj−1i−1 by induction hypothesis

=
1

γ
φj−1i

We also need to consider the case in which the barrier is moved. Suppose the barrier is moved at
the end of round i so λi+1 = λi + 1, so we must show that the invariant also holds for position
j = λi. Notice that the barrier is only moved when there is more than 1 − γ sand on it. So the
total sand to the left of the barrier, just before it was moved, must have been strictly less than γ
which means φλi−1i+1 < γ, furthermore φλii+1 = 1 because the barrier just moved to position λi + 1.

So φλi−1i+1 < γφλii+1.
Now, we prove the main claim of the theorem. Let d′i denote the average distance of the sand
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from the barrier at the beginning of round i, then:

d′i =

λi−1∑
j=0

φji sand at position j is counted exactly λi − j times

<

λi−1∑
j=0

γλi−1−jφλi−1i by (φineq)

≤
λi−1∑
j=0

γλi−1−j because φλi−1i ≤ 1

=
1− γλi
1− γ

C Online Stochastic Optimization

In this section, we briefly discuss applications of Alg. 1 and Theorem 2 to online stochastic opti-
mization problems in general. We present an abstract rounding problem that arises as a part of
many online stochastic optimization problems in which we optimize for the expected instance.

Definition 14. Let X1 · · · , Xn be independent non-identical Bernoulli random variables(with known
distributions) that are realized in some unknown order during an online process. Suppose we have
optimized the process such that

∑
iE[Xi] ≤ k, however we need to ensure that under any realization

of these random variables the constraint is not violated. In order to achieve this we may have to
round some of the Xi that are realized as 1 to 0 and we have to do this online. In other words, if
X ′i is the result of rounding Xi then we should set X ′i at the time Xi is realized. The objective is to
maximize the Pr[X ′i = 1|Xi = 1] for every i.

As an application of the above rounding problem, consider the following problem: Suppose we
have k units of a resource and each Xi is a possible request for one unit of resource but the sequence
of Xi may arrive in an unknown order. Furthermore, suppose we have optimized the system so
that the expected number of requests is no more than k, i.e.

∑
iE[Xi] ≤ k. We wish to maximize

the probability of satisfying each request.
Observe that for any γ ≤ γk the following algorithm guarantees that Pr[X ′i = 1|Xi = 1] ≥ γk

for any i which means every request regardless of its arrival time can be satisfied with probability
γ.

Algorithm 2 (γ-Conservative Rounding).

• Create a γ-conservative magician with k magic wands.

• Upon the realization of Xi, write E[Xi] on a box and present it to the magician. Let Yi be the
indicator random variable which is 1 iff the magician chooses to open the box. Set X ′i ← YiXi.
Furthermore, if X ′i = 1, break the wand of the magician.

D When Buyers Need More Than 1 Copy of Each Item

In this section, we show that the more general model in which each buyer may demand more than
one copy of each item but no more than 1

k of all copies of an item, can be reduced to the simpler
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model of Def. 1 in which we have at least k copies of every item an no one demands more than 1
copy of each item.

Definition 15 (Multi-Demand Market Transformation). Let kj denote the number of copies of

item j. Define cj = bkjk c and divide the copies of item j almost equally into cj bins (i.e., each bin
will contain either cj or cj + 1 copies). Create a new item type for each bin and treat the copies of
the same item from different bins as different items.

Theorem 18. Any mechanism that does not allocate more than 1
k of all copies of an item in the

general (mutli-demand) model can be converted to a mechanism that does not allocate more than
one copy of each item in the transformed market, such that from the view point of buyers the actual
allocations and payments are the same as the original mechanism.

Proof. To prove the theorem, it is enough to show that we can convert any allocation of the original
mechanism in the general market to an allocation in the transformed market such that no buyer
receives more than one copy of the same item from the same bin. We proceed as follows: For every
j, we create a list Lj of bins of item j. Lj is initially sorted in decreasing order of the size of the
bins. Let xij be the number of copies of item j allocated to buyer i by the original mechanism. We
define the allocation of the transformed mechanism as follows: for each buyer i we do the following
xij times: Allocate one copy from the bin that is in front of the list Lj and then move the bin to
the end of the list. It is easy to see that no two items from the same bin are allocated to the same
buyer.

Note that by Theorem 18, any mechanism in the original market is equivalent to a mechanism in
the transformed market with the exact same allocations/payments from the perspective of buyers.
So WLOG, we can work with the transformed market and only consider the mechanisms in this
market. However, note that to use our generic expansions in the transformed market, the underlying
primary mechanisms should be capable of handling correlated valuations because different copies
of the same item which are labeled as different items are perfect substitutes from the view point of
a buyer. Among the primary mechanisms presented in Appendix A, only Mech. 3 (subsection A.1)
can handle correlated valuations.

E Missing Proofs

Proof of Theorem 3. Suppose we create n boxes and in each box, independently, we put $1 with
probability k

n . If the magician opens a box containing a $1 then he gets the $1 but we break his

wand (i.e., qi = k
n). Observe that the expected total prize is k dollars but because we put a dollar

in each box independently, there are some instances in which there are more than k non-empty
boxes but the magician cannot win more than k dollars at any instance. Let Xi be the indicator
random variable which is 1 iff there is a dollar in box i. The expected total prize is E[

∑
iXi] = k

but the expected prize that the magician can win is at most E[min(
∑

iXi, k)]. It can be shown

that E[min(
∑

iXi, k)] = (1− kk

ekk!
)k asymptotically as n goes to infinity. In fact, for any positive ε,

there is a large enough n such that E[min(
∑

iXi, k)] < (1− kk

ekk!
+ ε)k. On the other hand, observe

that if a magician can guarantee that every box is opened with probability at least γ = 1− kk

ekk!
+ ε

then in expectation he will win at least
∑

i γE[Xi] = (1− kk

ekk!
+ε)k therefore no magician can make

such a guarantee.

Proof of Theorem 4. First, we compute an upper bound on the expected payoff of the prophet.
Let qi be the probability that the prophet chooses Vi (i.e. the probability that Vi is among the k
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highest draws). Now let ui(qi) denote the maximum possible contribution of random variable Vi
to the expected payoff of the prophet if Vi is selected with probability qi. Let Fi(·) and fi(·) be
the CDF and PDF of Vi and let v∗i be such that Pr[Vi ≥ v∗i ] = qi. Then ui(qi) =

∫∞
v∗i
vfi(v)dv. By

substituting v∗i = F−1i (1−qi) and doing a change of variables in the integral and applying the chain
rule we get ui(qi) =

∫ qi
0 F−1i (1 − q)dq. Observe that d

dqi
ui(qi) = F−1i (1 − qi) is a non-increasing

function so ui(qi) is a concave function. Furthermore,
∑

i qi ≤ k because the prophet cannot choose
more than k random draws. So the optimal objective value of the following convex program is an
upper bound on the payoff of the prophet:

maximize:
∑
i

ui(qi) (U)∑
i

qi ≤ k (τ)

∀i : qi ≥ 0 (µi)

Now let L(q, τ, µ) = −
∑

i ui(qi)+τ(
∑

i qi−k)−
∑

i µiqi be the Lagrangian. By KKT stationarity
condition, at the optimal assignment ∂

∂qi
L(q, τ, µ) = 0. On the other hand, ∂

∂qi
L(q, τ, µ) = −F−1i (1−

qi) + τ − µi. Assuming that qi > 0 by complementary slackness µi = 0 which then implies that
qi = 1− Fi(τ). Furthermore, we can also show that

∑
i Pr[Vi > τ ] = k because the first constraint

is tight. Observe that the contribution of each Vi to the objective value of the convex program
is exactly E[Vi|Vi > τ ]Pr[Vi > τ ]. Now, by using a γk-conservative magician we can ensure that
each box is opened with probability at least γk which implies the contribution of each Vi to the
expected payoff of the gambler is E[Vi|Vi > τ ]Pr[Vi > τ ]γk which proves that the expected payoff
of the gambler is at least γk fraction of optimal objective value of the convex program which was
itself and upper bound on the expected payoff of the prophet.

Proof of Theorem 5. The proof has two parts. In the first part, we show that R(q̄) is concave. In the
second part, we show how to construct a convex program of this form whose solution corresponds
to the allocation function of the optimal primary mechanism.

maximize: u(x) (CPR)

∀j : gj(x) ≤ q̄j (αj)

x ∈ X

Part 1: Define the Lagrange dual function D(α, q̄) as follows:

D(α, q̄) = max
x∈X

u(x)−
∑
j

αj(gj(x)− q̄j)


Notice that we can decompose the dual function to two components and write it as D(α, q) =

D′(α) +
∑

j αj q̄j in which D′(α) = maxx∈X

(
u(x)−

∑
j αjgj(x)

)
is independent of q̄. Now, by

strong duality we can write R(q̄) as follows:

R(q̄) = min
α≥0

D(α, q̄)

= min
α≥0

(D′(α) +
∑
j

αj q̄j)
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Notice that, in the last line, the expression inside the parenthesis is a linear function of q̄ and we
are taking the minimum of an infinite number of linear functions of q̄ so the resulting function is a
concave function of q̄.

Part 2: We show how to construct such convex program under any feasibility constraints, both
for revenue and for welfare. We show that u(x) and all gj(x) are linear functions is x and the set
X is a convex set.

• X is the set of all truthful and feasible allocation functions. Note that any truthful primary
mechanism can be fully specified by its allocation function x : R2m−1 → [0, 1]2

m
that maps

every possible type of the buyer to a probability distribution over bundles of items. Also, the
expected payment of any truthful mechanism can be specified uniquely (up to an additive
constant) by just specifying the allocation function. The buyer’s type is a (2m−1)-dimensional
vector that specifies her valuation for every possible bundle of items. Furthermore, observe
that we can encode all the feasibility and IC constraints into X. In other words, X is the set
of all allocation functions for which the corresponding mechanisms satisfy the IC constraints
and feasibility constraints (i.e., matroid constraints, budget constraints, etc). Observe that X
is a convex set because any convex combination of two truthful feasible allocation functions is
itself a truthful feasible allocation function (remember that an allocation function maps the
buyer’s types to probability distributions over bundles of items, so any infeasible bundle will
still have 0 probability in any convex combination of two feasible allocations).

• gj(x) is the marginal probability of allocating item j by the mechanism that uses allocation
function x. In a Bayesian setting we assume that the seller knows the probability distribution
of buyer’s types. Let f : R2m−1

+ → R+ be the PDF of this distribution. Also let Ij ∈ {0, 1}2
m

be a vector that has a 1 at every position that corresponds to a bundle containing item j.
Then gj(x) can be specified as follows:

gj(x) =

∫
R2m−1

+

Ij · x(t)f(t)dt

Observe that gj(x) is linear in x.

• u(x) is the expected objective value of the mechanism that uses the allocation function x.
Both for welfare and for revenue, u(x) can be written in the following form:

u(x) =

∫
R2m−1

+

φ(t) · x(t)f(t)dt

For welfare maximization we define φ(t) = t. For revenue maximization we define φ(t) to be
the virtual valuation as defined below (see [Arm96] for details):

φ(t) = t− t

f(t)

∫ ∞
1

r2
m−2f(rt)dr

Observe that, both for welfare and for revenue, u(x) is linear in x.
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Proof of Theorem 6. Let M∗N be the optimal n-buyer mechanism and for each i and j let q∗ij be
the probability that M∗N allocates a copy of item j to buyer i. We show that there exist primary
mechanisms M∗1, · · · ,M∗n such that for each i the expected objective value that M∗i obtains from
buyer i is exactly the same as the expected objective value thatM∗N obtains from buyer i andM∗i
allocates each item j to buyer i with probability exactly q∗ij . Then we can argue that the expected
objective value obtained by eachM∗i is upper bounded by the benchmark Ri(q

∗
i ) and therefore the

expected total objective value obtained by M∗N is no more than
∑

iRi(q
∗
i ). On the other hand, q∗

is a feasible solution for (CPRN ) therefore
∑

iRi(q
∗
i ) is no more that the optimal objective value of

the convex program (CPRN ). Next, we show how to construct each M∗i . For each i, we construct
M∗i by using M∗N on buyer i and n − 1 dummy buyers where for each i′ 6= i, the valuations of
dummy buyer i′ are drawn independent of other (dummy) buyers and are distributed according to
the prior distribution of buyer i′. Observe that M∗i as we just described is a primary mechanism
for buyer i and allocates each item j to buyer i with the exact same probabilities as M∗N . Notice
that it is crucial that the valuations of different buyers be independent, otherwise we wouldn’t be
able to draw the valuations of the dummy buyers from the correct distribution without knowing
the valuations of buyer i first.

Proof of Theorem 7. First we show that the γ-BIC expansion obtains in expectation at least γ · α
fraction of the expected objective value of the optimal n-buyer mechanism. Notice that the expected
objective value of the mechanism is E[

∑
i P
′
i ] = γE[

∑
i Pi] ≥ γ · α

∑
iRi(q̄i) and by Theorem 6∑

iRi(q̄i) is an upper bound on the objective value of the optimal n-buyer mechanism which proves
our claim.

Next, we prove that the γ-BIC expansion is indeed BIC. Consider any arbitrary buyer i. Let
Ti = {j|Xij = 1} be the set of items initially allocated to buyer i byMi(q̄i) and let T ′i = {j|X ′ij = 1}
be the final set of items allocated to buyer i by the γ-BIC expansion Mech. 1. By the assumption
of the theorem, valuations of buyer i can be interpreted as a weighted rank function of a matroid so
WLOG we assume that Ti is an independent set of this matroid (otherwise we can instead allocate
an independent subset of Ti with the highest valuation). Observe that the valuation of buyer i
for any subset of Ti is additive and T ′i is a random subset of Ti. Therefore, if we show that each
item j ∈ Ti is also in T ′i with probability γ then the expected valuation of buyer i for T ′i is exactly
γ times her valuation for Ti. We prove this by applying Theorem 2 to each instance of the γ-
conservative magician. Observe that for each j, the mechanism presents n boxes to the jth instance
of γ-conservative magician with magic wand breakage probabilities q̂1j , · · · , q̂mj . Furthermore, for
each j:

∑
i q̂ij ≤

∑
i q̄ij ≤ kj so by applying Theorem 2 to the jth magician we conclude that each

box is opened with probability exactly γ. Therefore Pr[X ′ij = 1|Xij = 1] = Pr[Yij = 1|Xij = 1] =
Pr[Yij = 1] = γ because Yij and Xij are independent (because buyers are independent). So T ′i is a
random subset of Ti that includes each item from Ti with probability exactly γ. Notice that since
each Mi is BIC and all allocations an payments of Mi are always scaled by the same constant γ,
the resulting mechanism is also BIC. Notice that each time we allocate a copy of item j, we break
the magic wand of the jth γ-conservative magician therefore we never allocate more items than we
actually have. That completes the proof.

Proof of Theorem 8. First we show that the γ-DSIC expansion is indeed DSIC. Notice that for each
buyer i, the γ-DSIC expansion selects the items that can be offered to buyer i prior to runningMi

and once it runsMi it uses the allocation/payment ofMi as the final allocation/payment for buyer
i. Therefore the γ-DSIC expansion is DSIC for each buyer i because Mi(q̄

′
i) is truthful for every

possible q̄′i. Furthermore, this mechanism also preserves all ex-post properties ofMi. For example
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if Mi is ex-post individually rational then the γ-DSIC expansion will also be ex-post individually
rational for buyer i.

Next, we show that the expected objective value of the γ-DSIC expansion is at least γ ·α fraction
of the expected objective value of the optimal n-buyer BIC mechanism. We start by showing that
each item is availabe to each Mi with probability at least γ, i.e., we show that Pr[Yij = 1] ≥ γ.
Observe that for each j, a sequence of n boxes with magic wand breakage probability upper bounds
q̄1j , · · · q̄nj are presented to the jth magician. By applying Theorem 2, when γ ≤ γk, this magician
guarantees that each box is opened with probability at least γ which means Pr[Yij = 1] ≥ γ. Next,
we show that if each item is available to each Mi with probability at least γ then the expected
objective value obtained from eachMi is at least γ ·αRi(q̄i) which implies that the total expected
objective value of the γ-DSIC expansion is at least γ · α

∑
iRi(q̄i) which proves our claim because,

by Theorem 6,
∑

iRi(q̄i) is an upper bound on the expected objective value of the optimal BIC
mechanism. Let Ti = {j|Yij = 1} denote the random subset of items available to Mi and let
Mr = {1, · · · , r} denote the first r item types (remember that M was the set of all item types).
Also let Gi(T ) = Ri(q

′′
i ) in which if j ∈ T then q′′ij = q̄ij else q′′ij = 0. Note that by the assumption of

the theorem the benchmark functions are submodular which by Def. 12 implies that Gi(·) as defined
above is submodular. Next, we show that the expected objective value of the γ-DSIC-expansion
obtained from buyer i, which we denote by E[Mi(q̄i)], is at least γ · αRi(q̄i) and that completes
the proof:

E[Mi(q̄i)] ≥ E[αGi(Ti)]

= αE
[ m∑
r=1

Gi(Ti ∩Mr)−
m−1∑
r=0

Gi(Ti ∩Mr)
]

= αE
[ m∑
r=1

Gi(Ti ∩Mr)−Gi(Ti ∩Mr−1)
]

= α
m∑
r=1

Pr[r ∈ Ti][Gi({r} ∪ (Ti ∩Mr−1))−Gi(Ti ∩Mr−1)]

≥ α
m∑
r=1

Pr[r ∈ Ti][Gi({r} ∪Mr−1)−Gi(Mr−1)] By submodularity of Gi(·)

≥ α · γ
m∑
r=1

(Gi(Mr)−Gi(Mr−1))

= α · γGi(Mm)

= α · γRi(q̄i)

Proof of Theorem 9. The proof of this theorem is similar to the proof of Theorem 6. LetM∗N be the
optimal n-buyer AIP mechanism and for each i and j let q∗ij be the probability that M∗N allocates
a copy of item j to buyer i. We show that there exist primary IP mechanisms M∗1, · · · ,M∗n such
that for each i the expected objective value that M∗i obtains from buyer i is exactly the same as
the expected objective value that M∗N obtains from buyer i, such that M∗i allocates each item
j to buyer i with probability exactly q∗ij . Then we can argue that the expected objective value
obtained by each M∗i is upper bounded by the benchmark Ri(q

∗
i ) and therefore the expected total

objective value obtained by M∗N is no more than
∑

iRi(q
∗
i ). On the other hand, q∗ is a feasible
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solution for (CPRN ) therefore
∑

iRi(q
∗
i ) is no more that the optimal objective value of the convex

program (CPRN ). Next, we show how to construct eachM∗i . For each i, we construct the primary
IP mechanism M∗i by using M∗N on buyer i and n − 1 dummy buyers where for each i′ 6= i, the
valuations of dummy buyer i′ are drawn independent of other (dummy) buyers and are distributed
according to the prior distribution of buyer i′. Observe that M∗i is a primary AIP mechanism for
buyer i and allocates each item j to buyer i with the exact same probabilities as M∗N . Notice
that it is crucial that the valuations of different buyers be independent, otherwise we wouldn’t be
able to draw the valuations of the dummy buyers from the correct distribution without knowing
the valuations of buyer i first. Now observe that for a single buyer the space of AIP mechanisms
collapse to the space of IP mechanisms so each Mi is in fact a primary IP mechanism because the
dummy buyers are randomly created by the mechanism and do not really exist.

Proof of Lem. 2. Let µ =
∑

j E[Zj ]. Define the random variables Wj = max(Wj−1 − Zj , 0) and

W0 = B. Observe that for each j, Wj = max(B −
∑j

r=1 Zr, 0) so min(
∑j

r=1 Zr, B) + Wj = B.

Therefore E[min(
∑j

r=1 Zr, B)] + E[Wj ] = B and to prove the theorem it is enough to show that
E[Wm] ≤ 1

eµ/B
·B. To show this we will prove the following inequality:

Wj ≤ (1− E[Zj ]

B
)Wj−1 (Wj)

Assuming that (Wj) is true, we can conclude the following which proves the claim.

Wm ≤ B ·
m∏
j=1

(1− E[Zj ]

B
)

≤ B · 1

eµ/B

The last inequality follows from the fact that
∑

j
E[Zj ]
B = µ

B , therefore the right hand side takes

its maximum when for all j :
E[Zj ]
B = µ

mB and m→∞. Furthermore, to prove the second inequality,
we can use the fact that (1 − xa) ≥ (1 − x)a for any a ≤ 1 and conclude that (1 − 1

eµ/B
)B ≥

(1 − 1
emin(µ,B)/B )B ≥ (1 − 1

e )min(µ,B)
B B = (1 − 1

e ) min(µ,B). Now it only remains to prove the
inequality (Wj):

E[Wj ] = E[max(Wj−1 − Zj , 0)]

≤ E[max(Wj−1 − Zj
Wj−1
B

, 0)] because
Wj−1
B
≤ 1

= E[Wj−1 − Zj
Wj−1
B

] because
Zj
B
≤ 1

= E[Wj−1]−
1

B
E[ZjWj−1]

≤ E[Wj−1]−
1

B
E[Zj ]E[Wj−1] because Zj and Wj−1 are independent.

= (1− E[Zj ]

B
)E[Wj−1]

That completes the proof.
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Proof of Lem. 4. To prove the claim, it is enough to show that r1∑
j qjpj

≥ 1
2 . WLOG, we may

assume that
∑

j pjqj = 1 since we can scale p1, · · · , pm by a constant c = 1∑
j qjpj

and this will also

scale r1, · · · , rm by the same constant c so the ratio r1∑
j qjpj

will not be affected. Now consider the

following LP and observe that qj , pj , and rj , as defined in the statement of the lemma, form a
feasible assignment for this LP. If we show that the optimal objective value of the LP is bounded
below by 1

2 , then that means for any feasible assignment the objective value will be at least 1
2 , and

therefore r1∑
j qjpj

≥ 1
2 . In the following LP, pj , and rj are variables and everything else is constant.

minimize: r1

∀j ∈ {1 · · ·m} : rj ≥ qjpj + (1− qj)rj+1 (αj)

∀j ∈ {1 · · ·m} : rj ≥ rj+1 (βj)∑
j

qjpj ≥ 1 (γ)

pj ≥ 0, rj ≥ 0

To prove that the optimal objective value of the above LP is bounded below by 1
2 , we construct

a feasible solution for its dual that obtains an objective value of 1
2 . The following is the dual LP:

maximize: γ

∀j ∈ {1 · · ·m} : γ ≤ αj (pj)

α1 + β1 ≤ 1 (r1)

∀j ∈ {2 · · ·m} : αj + βj ≤ (1− qj−1)αj−1 + βj−1 (rj)

0 ≤ (1− qm)αm + βm (rm+1)

αj ≥ 0, βj ≥ 0, γ ≥ 0

Now, suppose that for all j we set αj = γ and βj = βj−1 − qj−1γ except that for j = 1 we set

β1 = 1− γ. From this assignment, we get βj = 1− γ − γ
∑j−1

k=1 qk. Observe that we get a feasible
solution as long as all βj resulting from this assignment are non-negative. Furthermore, it is easy
to see that βj ≥ 1− γ − γ

∑m
k=1 qk ≥ 1− 2γ because

∑
j qj ≤ 1. Therefore, by setting γ = 1

2 , all βj
are non-negative and we always get a feasible solution for the dual LP with an objective value of 1

2
which completes the proof.
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