Invited submission, IEEE Computer Graphics and Applications, September, 1994

Linearly Scalable Computation of Smooth Molecular
Surfaces

Amitabh Varshney

Frederick P. Brooks, Jr.

William V. Wright

Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

Abstract

An algorithm for fast computation of Richards’s smooth
molecular surface is described. Our algorithm is easily par-
allelizable and scales linearly with the number of atoms in
a molecule.

1 Introduction

The smooth molecular surface of a molecule is defined
as the surface which an exterior probe-sphere touches as it
is rolled over the spherical atoms of that molecule. This
definition of a molecular surface was first proposed by
Richards [11]. This surface is useful in studying the struc-
ture and interactions of proteins, in particular for attack-
ing the protein-substrate docking problem. For examples
of such molecular surfaces, refer to Figures 5 — 10, where
these surfaces have been shown for various molecules and
with different probe-sphere radii.

Present systems for computing the surfaces of molecules
are batch-oriented. They take a few minutes to compute
the surface for a couple of thousand atoms. Our goal has
been to compute and display these surfaces at interactive
rates, by taking advantage of results from the field of com-
putational geometry, making further algorithmic improve-
ments, and parallelizing the computations.

Interactive computation and display of molecular sur-
faces should benefit biochemists in three important ways.
First, the ability to change the probe-radius interactively
helps one study the surface. Second, it helps in visualizing
the changing surface of a molecule as its atom positions
are changed. These changes in atom positions could be
due to user-defined forces as the user attempts to modify a
molecular model on a computer. Third, it assists in incor-
porating the effects of the solvent into the overall potential
energy computations during the interactive modifications
of a molecule on a computer.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly review some of the previous work that
has been done in computation of smooth molecular sur-
faces as well as some work that has been done in related
areas, particularly computational geometry. Then in Sec-
tion 3 we outline our approach. In Section 4 we estimate
the average number of “neighbors” for an atom in any pro-
tein molecule. Section 5 presents our results. Finally, we
present our conclusions and some promising areas deserv-
ing further research in Section 6.

2 Previous and related work

The analytic computation of the molecular surface was
first done by Connolly [2]. Here a molecular surface is

represented by a collection of spherical and toroidal patches
as follows:

e The surface for a region of a molecule where the probe
is in contact with only a single atom is modeled by a
convex spherical patch.

e The surface for a region of a molecule where the probe
is in simultaneous contact with only two atoms is
modeled by a saddle-shaped toroidal patch.

o The surface for a region where the probe is in simulta-
neous contact with three atoms is modeled by a con-
cave spherical triangular patch.

Only recently have the issues of algorithmic complexity
of these algorithms begun to be addressed. Let n be the
number of atoms in a molecule and let k£ be the average
number of neighboring atoms for an atom in the molecule.
By neighboring we mean the atoms that are near enough
to affect probe placement on a particular atom. Perrot et
al. [9] present a O(kn) algorithm that generates an approx-
imation to the solvent-accessible surface. In terms of se-
quential algorithmic complexity this is good, however some
points remain unaddressed here. This algorithm is inher-
ently sequential, as it always needs to start from some con-
cave spherical triangular region of the molecule and from
there it proceeds by adding an adjacent face at a time. Be-
sides being hard to parallelize, it fails for the cases where
the solvent-accessible surface folds back to intersect itself
or where the molecule has two or more sub-parts connected
by only two overlapping spheres. Also, it cannot generate
the interior cavities of a molecule.

In computational geometry, the a-hull has been defined
as a generalization of the convex hull of point-sets by Edels-
brunner, Kirkpatrick, and Seidel [5]. For a > 0, the a-hull
of a set of points P in two dimensions is defined to be the
intersection of the closed complements of all discs with ra-
dius « whose closed complement contains all points of P.
If we generalize this notion of a-hulls over point-sets to the
corresponding hulls over spheres of unequal radii in three
dimensions, we would get the Richards’s smooth molecular
surface (along with the surfaces defining the interior cav-
ities of the molecule). It has been shown in [5] that it is
possible to compute the a-hulls from the Voronoi diagram
of the points of P. For a = oo the a-hull over the set of
points P is the same as their convex hull. Richards [11] had
also suggested computing the molecular surface by comput-
ing a 3D Voronoi diagram first and then using its faces to
determine which nearby atoms to consider.

Edelsbrunner and Miicke [6] extend the definition of a-
hulls to points in three dimensions. Here an a-shape over
a set of points P has been defined to be the polytope that
approximates the a-hull over P by replacing circular arcs
of the a-hull by straight edges and spherical caps by tri-
angles. An a-shape of a set of points P is a subset of
the Delaunay triangulation of P. Edelsbrunner in [4], ex-
tends the concept of a-shapes to deal with weighted points
(i.e. spheres with possibly unequal and non-zero radii) in
three dimensions. An a-shape of a set of weighted points
P, is a subset of the regular triangulation of P,. Since
these methods involve computing the entire triangulation
first and then culling away the parts that are not required,
their complexity is O(n?) in time. This is worst-case op-
timal, since an a-shape in three dimensions could have a
complexity of Q(n?). We next discuss a different approach
that is easy to parallelize and works better for environ-
ments where the maximum density of P in a given volume
is some constant smaller than n. Molecules are a good
example of such environments.

3 Owur approach

Our goal has been to formulate a parallel analytical
molecular surface algorithm that has expected linear com-
plexity with respect to the total number of atoms of a
molecule. For achieving this goal, we have avoided compu-
tation of the complete three-dimensional regular triangula-
tion over the entire set of atoms — a process that takes time
O(n?), where n is the number of atoms in the molecule.

Let us consider a molecule as a collection of weighted
points (c¢;,r;) in three dimensions, where the coordinates
¢; of each point correspond to the center of atom i and
the weight r; is the radius of atom . Such collections
of weighted points representing molecules have two inter-
esting properties: (i) the minimum distance d;; between
any two centers c¢; and c¢; is greater than or equal to
a positive constant lm,i, — the smallest bond-length in
the molecule and (ii) the set of all the weights can be
bounded from above and below by strictly positive val-
ues, 0 < rmin < 75 < Tmaez- We take advantage of the
first property to arrive at better running times for our al-
gorithm. Stated simply, the first property says that the
number of neighboring atoms within a fixed distance from
any atom ¢, is always bounded from above by a constant
kmae that depends on the minimum spacing between any
two atoms. If the average number of neighbors for an atom
is k, then we can just compute an approximation to the
power cell (the concept of a power cell is presented in [1]
and briefly reviewed in Section 3.1), which we call a feasible
cell (the definition of a feasible cell appears in Section 3.3),
by considering only these neighbors. Each feasible cell can
be computed in parallel in time O(klogk). For n atoms,
this task requires n processors, each processor computing
the feasible cell for one atom.

3.1 Formal notation

In this section we will introduce the definitions and no-
tations that we will be using for the rest of the paper. We
consider the underlying space to be three-dimensional Eu-
clidean Space ®?, although these results can be generalized
to higher dimensions.

Let o(c,r) be a sphere of center ¢ and radius r. Let z,y
be two points. Define d(z,y) to be the Euclidean distance
between x and y. The power of a point x with respect to
a sphere o(c,r) is defined as p(z,0) = d?(z,c) — r? Thus,

p(z,0) < 0,= 0,> 0, depending on whether z lies inside
o, on the boundary of o, or outside o, respectively.

Let M = {S1,...,S»}, be a set of spheres, where each
sphere, S;, is expressed as o(ci, r;). We shall be assuming
that the atom 7 of a molecule is represented by the sphere S;
and will be using the terms atom 7 and S; interchangeably.
Let the radius of the probe-sphere be R. We define the
extended-radius sphere for atom i to be ¥; = o(ci,r; + R).
The surface of this extended-radius sphere ¥; is the locus
of the possible centers of the probe-sphere when it is in
contact with atom 4.

Define a chordale II;; of the spheres ¥; and ¥; as
L, = {z|p(z, ¥:) = p(z,¥;)} = {z[22(c; — i) = 1:° -
r;® —ci® +¢;2 —2R(rj —r;)}. Thus, II;; is a plane perpen-
dicular to the line joining c¢; and ¢;. Define the halfspace
H;; as H;; = {z|p(z,¥;) < p(z,¥;)}. The chordale II;;
divides the whole space into two halfspaces. H;; is that
half-space in which all points have a smaller power with
respect to ¥; than ¥;. In other words, all points selected
by Hj;; are closer to ¢; than ¢; under the distance function
defined by the power metric (as defined by the power func-
tion above), instead of the conventional Euclidean metric.
Thus, whereas Hi]' = Hji, Hi]‘ 7& Hji.

Define the power cell, PC;, for atom ¢ as PC; = N; H;;.
Thus PC; is the set of all the points that are closer to c¢;
than any other sphere center c;, assuming that the dis-
tance is measured in the power metric. The definition and
algorithms for computing power cells have been given by
Aurenhammer in [1].

3.2 Determination of neighboring atoms

Determination of neighboring atoms can be done by
spatial grid subdivision into cubical voxels, and assigning
atoms to the appropriate voxels. We recall that an atom j
is considered a meighbor to atom 1 if it is possible to place
a probe such that it is in contact with both S; and Sj
(without considering any hindrance due to other atoms).
We define the region of influence, p;, for atom ¢ to be the
sphere o(c;,r; + 2R+ maxj_; r;). Then for computing the
list of neighboring atoms, Nj;, for atom i, one needs to find
all the atoms that are close enough to affect probe place-
ment on atom ¢. Formally, N; = {j|d(ci,¢;) < ri+2R+r;},
or equivalently, N; = {j|¥; N ¥; # ¢}. The centers of all
atoms whose indices occur in N; lie inside the sphere p;.
Formally, VjeN;,p(cj,pi) < 0. Therefore to compute the
list of neighboring atoms for atom ¢, one needs to look at all
the atoms whose centers lie in the voxels that intersect p;.
Let the average number of neighboring atoms be k. Note
that k grows as R® assuming that the atoms are uniformly
distributed. In Figure 1 atoms j; and j» are neighbors to

atom %, but not to each other.

S

Figure 1: Defining Neighbors

3.3 Determination of surface atoms

Here the aim is to determine the atoms that are buried
in the interior of the molecule and would not therefore
directly participate in the final definition of the smooth
molecular surface. This step is not crucial to the linear
time complexity of the overall algorithm but it helps in
improving the execution times.

Let us first define a feasible cell F; as F; = Njen,; Hij.
We will refine this definition of a feasible cell later in this
section. Since a power cell PC; is defined as PC; = N; H;j,
it is easy to see that PC; C F;. This difference between
power and feasible cells arises from the fact that for the con-
struction of a feasible cell F; we use only those halfspaces
H;; for which it is true that the extended-radius spheres
¥, and ¥; intersect. However, for forming the power cells
PC;, we use all the halfspaces H;; regardless of whether
¥; and ¥; intersect or not.

In Figure 2, we show these differences for power cells
and feasible cells defined over circles. The power cell PC3
contains two edges and one vertex as does the correspond-
ing feasible cell F3. However, whereas the power cells PC}
and PC'> have two edges and one vertex each, the corre-
sponding feasible cells F; and F> have only one edge each,
with no vertices.

\
\
PC, E |
\
\

PC

]

(a) Power Cells

(b) Feasible Cells

Figure 2: Power Cells and Feasible Cells

As the above example shows, it is possible to get fea-
sible cells that are not bounded. However, it is attractive
to have all the F; closed and bounded. This compactness
property of F; enables one to use the vertices of F; in com-
puting a tessellation of the molecular surface. We plan to
describe the details of this tessellation process elsewhere;
it is outside the scope of this paper.

To make all F; closed and bounded, we first construct
a tetrahedron T that encloses the entire molecule. Let
each face f of T lie in a plane II;. Every such plane Iy
can be considered to be defining two halfspaces, one that
includes the molecule and the other that does not. Let
H;,0 < f < 3 be the four halfspaces, one due to each
face f of T, that select the molecule. We include H; with
the set of halfspaces H;; that are used in defining Fj, Vi.
With this modification we are now ready to give the final
definition of F; as: F; = (ﬂjeNi Hij) m(ﬂ?f’onf).

With the matter of the definition of F; having been
settled, we can now determine the surface atoms as fol-
lows. First, for the entire molecule we compute Hy,0 <
f < 3. Next, for every atom i, we first compute N;
as described in Section 3.2. Then we compute F; =

(ﬂjeNi Hij) ﬂ(ﬂ?f):OHf)- If F; = ¢, atom ¢ is totally buried
and cannot be a surface atom. This checking for nullity
is done by Seidel’s randomized linear programming algo-
rithm that has linear expected time and is quite fast in
practice [12]. All the atoms for which F; # ¢ are classified
as candidates for being surface atoms.

3.4 Determination of surface patches

Determination of the vertices defining the convex spher-
ical, concave spherical, and toroidal patches is the most
crucial (and time-consuming) part of the whole algorithm.

If one computes a three-dimensional a-shape polytope
for the set of atoms in a molecule, with a = probe-radius,
then the torii occur along the edges, the concave spherical
triangular patches correspond to the faces, and the convex
spherical patches correspond to the vertices of this poly-
tope. The method given by Edelsbrunner [4] finds these
edges by first computing the entire three-dimensional reg-
ular triangulation, an O(n?®) approach. We show here a
method for computing the three-dimensional a-hull, for a
given value of a, for molecules in parallel time O(klog k)
Over n processors

To compute F;, we compute the convex hull of the points
dual to the H;; in the dual-space, as described in [10]. This
is an O(klog k) time process. Next we compute the dual of
the convex hull to get the feasible cell F;, in time O(k). The
intersection of the feasible cell F; with ¥; gives rise to a set
of components on ¥;. Since F; is convex, every component
Jcp is closed, simply connected, and does not intersect any
other component. Each of these closed components Jcp,
divides ¥; into two connected regions, say R,, and Ry, .
For exactly one of these, say Rp,,, it will be true that
R,,, C F;. We define R,;,,, to be the interior of the closed
component dc,. We can determine all these components
Jcp, by finding the intersections of the edges and faces of
F; with ¥;. This can be done in O(k) time.

After a connected component dc, has been determined
on ¥; we generate the surface patches. It is important
to note there the distinction between the component Jc,
and the surface patches it generates. For each component
Ocp, there exists a one-to-one mapping, say F, with a con-
vex spherical patch of the Richards’s surface together with
parts of its adjacent (non-convex) patches.

We describe the mapping F next. Let the component
Ocp be composed of r arcs, ap,,8p,,-..,ap,_,, and r ver-
tices, vpg,Vpy,...,Vp._;. The arcs ap,,0 < g < r deter-
mine the locus of the center of the probe while it is in
contact with two atoms. These arcs a,, therefore are used
to generate the toroidal patches. The vertices vp, of this
component d¢,, where two arcs intersect, define the posi-
tions of the center of the probe while it is in contact with
three atoms. These vertices vp, are used to generate the
concave spherical triangular patches. The interior of the
component d¢, corresponds to the positions of the center
of the probe while it is tangent to only atom i. This is used
to generate a convex spherical patch.

In Figure 3 a component defined by three chordales IT;;’s
intersecting ¥; has been shown with its interior unshaded.

3.5 Parallelization

Our approach to computing the smooth molecular sur-
face can be parallelized over all the atoms of the molecule.
Each of the steps as described above can be carried out
independently for each atom. The most expensive of these
steps is the construction of a feasible cell which takes time

Concave
Spherical

===

E
f
t

Convex
Spherical

N >

Toroidal

Figure 3: Determination of Molecular Surface Patches

O(klogk), for k neighbors. Therefore the complexity of
our algorithm over n processors would be O(k log k). If the

number of available processors p < m, we can allocate 2

atoms per processor to get a time complexity of O(L‘;’?—k).

These bounds hold in a CREW (concurrent-read exclusive-
write) PRAM model of parallel computation.

3.6 Robustness

In the algorithms for computing the convex hull of a set
of points, it is assumed that the points are in a general
position, ie. no more than d points lie on the same d — 1
dimensional hyperplane. In reality this assumption often
fails to hold, leading to problems. For example, planar
benzene rings occur often in proteins, causing six carbon
and six hydrogen atoms to be all coplanar.

One of the recent approaches to solving this problem has
been to perturb the input point set slightly to avoid these
degeneracies. We are using a version of the deterministic
perturbation scheme proposed by Emiris and Canny [7],
which perturbs the jth dimension of the i** point as:

pij(e) =pij +e(@ modg)l <i<n,1<j<d (1)

where € is a symbolic infinitesimal and ¢ is the smallest
prime greater than n.

4 Estimating the Number of Neighbors
in Proteins

In this section we shall outline a method for estimat-
ing the average number of neighbors k in proteins — the
molecules for which the molecular surfaces are most often
computed. The value of k that we have observed in prac-
tice is around 45 for a probe-radius of 1.44. The purpose
of this section is to assure that the average value of k in any
protein cannot not be too much larger than the values of &k
that we have observed. In this section, we shall first state
our assumptions for protein molecules and then outline a
method for estimating k. This and some other methods for
estimating k, are described in [13].

4.1 Assumptions

Let us start with the basic structure of a protein. A
protein is an arbitrarily long chain of bonded amino acid
residues. Each amino acid residue has an identical backbone
or main-chain part and a side chain of one of 20 types. For
a good introduction to the basic structure of proteins the
interested reader can refer to the book by Dickerson and
Geis [3].

Let us consider a graph G representing the covalent
bond structure of a protein by representing each atom of
the protein by a vertex and each covalent bond by an edge.
G will be largely acyclic, with a few exceptions. These ex-
ceptions are — (a) the three aromatic amino acid residues
(phenylalanine, tyrosine, and tryptophan) — which each
have either one or two cycles in the side chain (b) pro-
line — which forms a cycle through a bond between its side
chain and main chain, and (c) disulphide bonds. To a first
approximation we can ignore these cycles and simply con-
sider the graph G to be a tree.

We recall that the degree of a vertex in a graph is de-
fined as the number of edges incident at that vertex. From
this it follows that in any graph, including a tree, the sum
of the degrees of the vertices equals twice the number of
edges. Now, if a tree has n vertices, it will have n — 1
edges, and therefore the sum of degrees will be (2n — 2).
This sum will increase by one for every cycle in the protein.
Therefore, to a first approximation we can assume that the
average degree per vertex in G is 2. In other words, to a
first approximation, the average number of atoms cova-
lently bonded to an atom in a protein molecule is 2.

Since it is extremely difficult to derive bounds for k for
the general case where the radii of the atoms are different
and the shape of the molecule is arbitrary, we shall make
the following assumptions:

A: The boundary effects of the molecule will be ignored.
This means that for any atom, we will be assuming that
its entire region of influence is completely filled with other
atoms, even though it is clear that for atoms on the bound-
ary of the molecule this will not be true. Although this
assumption is not always true, it can only lead us to over-
estimate the average number of neighbors.

B: For our purposes of finding the average number of
neighbors, we shall consider all atoms to have equal radii
rq = 1.75A. For comparison, the radii of various commonly
occurring atoms in proteins are indeed close to each other:
C-1.85A4, N-1.754, 0 - 1.64, H - 1.004, S - 2.004, P
- 2.104 [14].

C: The average distance between the centers of any two
atoms is [= 1.54 — the bond length of a single C-C bond
[14].

D: The radius of the probe-sphere, which determines
the radius of the region of influence, is R = 1.4A, approxi-
mately the radius of a water molecule.

With these assumptions, the radius of the region of in-
fluence is Rinfiuence =2 X ra +2 X R = 6.3A.

4.2 Volume-based Estimation of &

We are interested in estimating the number of spheres
whose centers lie within the region of influence. In Sec-
tion 3 we had stated that the minimum distance d;; be-
tween any two atom centers ¢; and c; is greater than or
equal to a positive constant l,i, — the smallest bond-
length in the molecule. Using this property with the as-
sumption C' stated above we can assume that the average
bond length { = 1.5A. Further, since we are dealing with
proteins, we can assume to a first approximation that on
an average each atom is covalently bonded to two other
atoms. From these we can conclude that the the average
number of atom centers that can lie within a sphere of
radius [= 1.54 is no more than 3, as shown in Figure 4.

Therefore, volume per atom center > X(%£(1.5)%) =

3
47 (1.125) and total volume = 4Z R} 1/, ... = 4Z(250.047).

Figure 4: Volume per Three Atom Centers

4r (250.047
% = 9299,

We can improve the above bound, if we are prepared to
make the following assumption:

Two atoms i and j are bonded iff c;eo(c;,r;) and
cjeo(ci, i), that is the center of atom i lies inside the sphere
representing atom j and vice-versa.

With the above assumption, the average number of
atom centers that can lie within a sphere of radius I =
re = 1.754 is no more than 3. Therefore, we have:

volume per atom center > 1(4X(1.75)%) = 4X(1.786).

4x (250.047)
Thus, k S 3%"'(17786) = 139.

Thus, k <

5 Results

Our implementation has been done on Pixel-Planes
5 [8], although it is general enough to be easily portable
to any other parallel architecture. Table 1 shows our tim-
ings for computation and display of the molecular surface
for various molecules for a probe-radius of 1.44. For these
results we were using configurations of 8, 16, or 24 Intel
i860 processors. Our configuration of p processors con-
sists of one master processor and p — 1 slave processors.
The master processor is responsible for distributing the
work amongst the slave processors that perform the ac-
tual surface computations. This explains the superlinear
times observed in Table 1. The molecules for which we
have made these studies are crambin, felix, dihydrofolate
reductase (DHFR), and superoxide dismutase (SOD). The
Brookhaven Protein Data Bank files that we have used for
these molecules are pdblcrn.ent, pdblflx.ent, pdb2dhf.ent,
and pdb2sod.ent, respectively. We have removed all the
extra water molecules that were at the end of pdb2dhf.ent
as they are not a part of the DHFR molecule per se. At
present, we are representing the molecular surface by trian-
gles, and the column Tris in Table 1 refers to the complex-
ity of the computed surface in terms of number of triangles
(rounded to the nearest thousand).

As can be seen, the value of k, the average number of
neighbors, is fairly constant for a given probe-radius over
different molecules.

Times (sec)

Processors k Tris
8 16 24
Crambin 327 0.66 | 0.32 | 0.24 | 41.3 14K
Felix 613 1.34 | 0.66 | 0.42 | 40.7 31K
DHFR 2980 5.62 | 2.70 | 1.79 | 44.8 92K
SOD 4392 8.36 | 3.99 | 2.65 | 46.6 | 127K

Molecule | Atoms

Table 10: Smooth Molecular Surface Generation Times
for 1.4A probe-radius.

Table 2 shows the times for the generation of the molec-
ular surface for crambin using 24 processors, and different
probe-radii varying from 1.0A to 10.0A.

Probe-Radius | 1.04 | 1.4A | 2.84 | 5.04 | 10.04A

Times (sec) 0.23 | 0.24 | 0.32 | 0.53 0.95

k 29.9 | 413 | 91.8 | 191.5 | 318.3

Triangles 16K | 14K | 12K 11K 11K

Table 2: Smooth Molecular Surface Generation Times
for Crambin using 24 Intel i860 Processors.

The smooth molecular surfaces for crambin with probe-
sphere radii of 1.44, 2.84, 5.04, and 10.0A4 are shown in
Figures 5, 6, 7, and 8 respectively. The smooth molecular
surfaces for dihydrofolate reductase and superoxide dismu-
tase for a probe-sphere radius of 1.44 are shown in Figures
9 and 10 respectively.

6 Conclusions and future work

We have presented a parallel algorithm for computing
the molecular surfaces in parallel time O(klogk) over n
processors. This is sufficiently general enough to be used
for computation of a-hulls and a-shapes for a given value
of a as long as no two points are arbitrarily close (i.e. the
ratio of the distance between the closest pair of points to
the diameter of the set of points is bounded from below
by a strictly positive number). Our algorithm would give
an order of magnitude improvement over the previous best
known algorithms for molecules with moderately large val-
ues of n, on the order of a few thousands or more, in both
sequential and parallel implementations.

At present we are not using any incremental temporal
information in constructing these surfaces. Thus, if the
atoms move slightly from their positions, the whole sur-
face has to be recomputed from the beginning. Assuming
the atoms of the molecule move along continuous trajecto-
ries, it should be possible to compute such surfaces (and
indeed a-hulls and a-shapes) incrementally and efficiently
by using the information from previous time steps.

Sometimes the molecular surface self-intersects due to
overlap from probes that come from opposite sides of a sur-
face. Traditionally, such overlapping surfaces are clipped
away to form cusps in the molecular surface. At present,
we correctly handle only those cases where the cusps are
either minor or can be easily determined by limited local
checks. A general approach to this problem needs to be
developed.

Acknowledgments

We would like to acknowledge the valuable discussions
we had with Pankaj Agarwal, Dinesh Manocha, Jan Prins,
and David Richardson during various stages of this work.
We would like to thank the editors and the anonymous
referees for their suggestions which have led to improve-
ments in the presentation of this paper. We would also
like to thank Nelson Max for pointing out an error in the
expression of II;; in the conference version of this paper.
This work was supported by NIH National Center for Re-
search Resources grant number 5-P41-RR02170. Equip-
ment support provided by NSF/ARPA Science and Tech-
nology Center for Computer Graphics and Scientific Visu-
alization, NSF Prime Contract Number 8920219.

References

[1] F. Aurenhammer. Power diagrams: Properties, algo-
rithms and applications. STAM Journal of Computing,
16(1):78-96, 1987.

[2] M. L. Connolly. Analytical molecular surface calcula-
tion. Journal of Applied Crystallography, 16:548-558,
1983.

[3] R. E. Dickerson and I. Geis. The Structure and Action
of Proteins. Harper & Row, New York, NY, 1969.

[4] H. Edelsbrunner. Weighted alpha shapes. Tech-
nical Report UIUCDCS-R-92-1740, Department of
Computer Science, University of Illinois at Urbana-
Champaign, 1992.

[6] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel.
On the shape of a set of points in the plane. IEEE
Transactions on Information Theory, IT-29(4):551—
559, 1983.

[6] H. Edelsbrunner and E. P. Miicke. Three-dimensional
alpha shapes. ACM Transactions on Graphics, 13(1),
1994.

[7] I. Emiris and J. Canny. An efficient approach to
removing geometric degeneracies. In Eighth Annual
Symposium on Computational Geometry, pages 74—
82, Berlin, Germany, June 1992. ACM Press.

[8] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Gold-
feather, D. Ellsworth, S. Molnar, G. Turk, B. Tebbs,
and L. Israel. Pixel-planes 5: A heterogeneous multi-
processor graphics system using processor-enhanced
memories. In Computer Graphics: Proceedings of
SIGGRAPH’89, volume 23, No. 3, pages 79-88. ACM
SIGGRAPH, 1989.

[9] G. Perrot, B. Cheng, K. D. Gibson, J. Vila, K. A.
Palmer, A. Nayeem, B. Maigret, and H. A. Scheraga.
MSEED: A program for the rapid analytical deter-
mination of accessible surface areas and their deriva-
tives. Journal of Computational Chemistry, 13(1):1-
11, 1992.

[10] F. P. Preparata and M. I. Shamos. Computational
Geometry - an Introduction. Springer-Verlag, 1985.

[11] F. M. Richards. Areas, volumes, packing and protein
structure. Ann. Rev. Biophys. Bioengg., 6:151-176,
1977.

[12] R. Seidel. Linear programming and convex hulls made
easy. In Sizth Annual ACM Symposium on Computa-
tional Geometry, pages 211-215, Berkeley, California,
June 1990. ACM Press.

[13] A. Varshney, W. V. Wright, and F. P. Brooks, Jr.
Bounding the number of unit spheres inside a larger
sphere. Technical Report UNC-CS-TR-93-039, De-
partment of Computer Science, University of North
Carolina at Chapel Hill, 1993.

[14] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh,
C. Ghio, G. Alagona, S. Profeta Jr., and P. Weiner. A
new force field for molecular mechanical simulation of
nucleic acids and proteins. Journal of the American
Chemical Society, 106(3):765-784, 1984.

Biographies

Amitabh Varshney is a doctoral student at the Uni-
versity of North Carolina at Chapel Hill. His research in-
terests include molecular graphics, computational geome-
try, object simplification, global illumination, and textur-
ing. He received his B.Tech. in Computer Science from

the Indian Institute of Technology Delhi, and his M.S. in
Computer Science from the University of North Carolina
at Chapel Hill.

Frederick P. Brooks, Jr. is Kenan Professor of Com-
puter Science at the University of North Carolina at Chapel
Hill. He was an architect of the IBM Stretch and Har-
vest computers. He was Corporate Project Manager for
the System /360, including development of the System /360
computer family hardware, and the Operating System /360
software. He founded the Department of Computer Science

in 1964 and chaired it for 20 years. His research there has
been in computer architecture, software engineering, and
interactive 3-D computer graphics (“virtual reality”). Dr.
Brooks has received National Medal of Technology and the
John von Neumann Medal of the IEEE.

William V. Wright is a research professor of com-
puter science at the University of North Carolina at Chapel
Hill and director of the GRIP project, a Research Re-
source funded by the National Institutes of Health devel-
oping computer graphics systems for studying molecular
graphics, visualization of scientific data, and computer ar-

chitecture and implementation. He received his Ph.D. in
computer science from the University of North Carolina at
Chapel Hill in 1972, is a member of ACM Siggraph, and is
a senior member of the IEEE.

Figure 5: Molecular Surface for Crambin, Probe Ra- Figure 6: Molecular Surface for Crambin, Probe Ra-

dius = 1.44 dius = 2.84

Figure 7: Molecular Surface for Crambin, Probe Ra- Figure 8: Molecular Surface for Crambin, Probe Ra-
dius = 5.04 dius = 10.04

Figure 9: Molecular Surface for Dihydrofolate reduc- Figure 10: Molecular Surface for Superoxide dismu-
tase, Probe Radius = 1.44 tase, Probe Radius = 1.44

