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Abstract

We present a topology simplifying approach that can be used for genus reductions, removal of protu-
berances, and repair of cracks in polygonal models in a unified framework. Our work is complementary
to the existing work on geometry simplification of polygonal datasets and we demonstrate that using
topology and geometry simplifications together yields superior multiresolution hierarchies than is possi-
ble by using either of them alone. Our approach can also address the important issue of repair of cracks
in polygonal models as well as for rapid identification and removal of protuberances based on internal
accessibility in polygonal models. Our approach is based on identifying holes and cracks by extending
the concept of�-shapes to polygonal meshes under theL1 distance metric. We then generate valid
triangulations to fill them using the intuitive notion of sweeping aL1 cube over the identified regions.

CR Categories and Subject Descriptors:I.3.3 [Computer Graphics]: Picture/Image Generation —
Display algorithms; I.3.5[Computer Graphics]: Computational Geometry and Object Modeling — Curve,
surface, solid, and object representations.

Additional Key Words and Phrases:hierarchical approximation, model simplification, levels-of-detail
generation, shape approximation, geometric modeling, topology simplification, CAD model repair.

1 Introduction

Multiresolution rendering involves rendering perceptually less significant objects in a scene at lower levels
of detail and perceptually more significant objects at higher levels of detail. Most algorithms for creating
multiresolution hierarchies of polyhedral objects [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] preserve the topology of the
input object. Preservation of the input topology is a desirable and sometimes even a crucial requirement of
the end-application using the multiresolution hierarchy. For instance, information about the presence of tun-
nels and cavities in a molecule is quite important in biochemistry applications such as rational drug design.
Regardless of the degree of surface simplification, it is crucial for these applications that such topologi-
cal features be preserved. Similarly, adaptive simplifications for finite-element structures and study of fine
tolerances between nearby parts in mechanical CAD requires the use of genus-preserving simplifications.
However, in virtual environments one has to reconcile the mutually conflicting goals of visual realism and
real-time interactivity. In such environments it often becomes necessary to relax the constraint of topology
preservation in the interest of more aggressive simplification that yields faster rendering rates.

For example, consider a mechanical part as shown in Fig. 1. As this part is moved away from the
observer the holes and protuberances in the object will appear to become smaller, eventually reaching sub-
pixel sizes. At such distances a topology-simplifying multiresolution hierarchy that simplifies away the
holes is often preferable to a topology-preserving hierarchy that preserves the genus of an object, since
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genus preservation comes at the cost of increased representation complexity. This paper addresses automatic
creation of topology-simplifying multiresolution hierarchies.

(a)

(b)

Figure 1: Topology simplifying multiresolution hierarchy

Simplification of an object of arbitrary topological type can be viewed as a two-stage process – simplifi-
cation of the topology (i.e. reduction of the genus) and simplification of the geometry (i.e. reduction of the
number of vertices, edges, and faces). Our approach mainly addresses the former, although as we discuss
in Section 4, it can also be used to a limited extent in removing small protuberances that fall in the latter
category. In general, it is difficult for geometry-simplification techniques to remove small protuberances
from models as cleanly and as naturally as our method (example Fig. 7). Although our approach is general
and applicable to any polygonal dataset, we have developed a set of heuristics, presented in Section 3.3,
that rapidly identify candidate regions for genus reductions. For a typical object there are few candidate
regions for genus-reducing simplifications and this allows the running times for the genus-reducing stages
to be usually much less as compared to the genus-preserving simplification stage. Our results demonstrate
that genus reductions by small amounts can lead to large overall simplifications (Section 7). Details of our
implementation are given in Section 6.

One of the problems encountered in a large fraction of real-life CAD datasets are geometric degeneracies
such as cracks. These geometric degeneracies arise from both human as well as computer-generated errors.
Aside from leading to problems in manufacturability and simulation studies, data degeneracies result in
visual artifacts in virtual environments. For instance, cracks cause light leaks in radiosity simulations and are
also a leading cause behind unexpected shading discontinuities. In addition, they prevent the use of a large
fraction of existing multiresolution hierarchy generation algorithms since most of them assume meshes with
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no geometric degeneracies. Our approach can fill cracks that are narrower than a user-specified threshold�.
We discuss this further in Section 5.

The earlier conference-version of this paper [11] addresses exclusively the issue of controlled genus
simplifications for polygonal models. In addition to more examples illustrating the results of our genus-
simplifying approach on CAD datasets, this paper also presents recent extensions of our research to deal
with removal of protuberances based upon internal accessibility as well as repair of cracks often found in
real-life mechanical CAD datasets.

2 Previous work

Our research builds upon previous work in three related but different areas of research – topology simpli-
fication of polygonal datasets, topology-varying reconstruction of surfaces, and repair of cracks in CAD
models. The previous work in these areas is briefly surveyed next.

2.1 Topology-reducing Multiresolution Hierarchies

While there has been a significant amount of work done on creation of topology-preserving multiresolution
hierarchies, much less attention has been focussed on creation of topology-simplifying hierarchies [7, 12,
13].

Rossignac and Borrel’s algorithm [7] subdivides the model by a global grid and uses a vertex clustering
approach within each grid cell. All vertices that lie within a grid cell are combined and replaced by a new
vertex. The polygonal mesh is suitably updated to reflect this. The nice properties of this approach are that
it is quite fast and can work in presence of degeneracies often found in real-life polygonal datasets. This
approach simplifies the genus if the desired simplification regions fall within a grid cell. However, it makes
no guarantees about genus reduction and fine control over the genus simplification is not easy to achieve.

Heet al [12] present an algorithm to perform a controlled simplification of the genus of an object. It is a
good approach that is applicable to volumetric objects on a voxel grid. It can handle degeneracies. However,
since it works in the volumetric domain, polygonal objects have to be first voxelized. This often results in an
increased complexity that is related to the volume of the object, not to its original representation complexity.
Besides, the results from this approach lead to a scaled-down version of the simplified object that needs to
be scaled back up to maintain the same size as the original object. This is not difficult but it adds another
stage to the overall simplification process.

Concurrent to our work on genus-reducing simplifications Schroeder [13] has defined vertex split and
vertex merge operations on polygonal meshes for modifying the topology of polygonal models. This ap-
proach uses local distance criteria for geometry and topology simplification and achieves good results on
large models. Like our method, this approach allows a fine control over the changes in the topology of an
object. However, it does not identify and remove triangles that become internal after genus reductions and
are thus no longer visible from the outside.

Garland and Heckbert [14] present a quadric error metric that can be used to perform genus as well as
geometric simplifications. The error at a vertexv is stored in the form a4� 4 symmetric matrix which can
be used to compute the sum of squared distances of a given point with respect to the triangles adjacent tov.
The algorithm proceeds by performing vertex-pair collapses and the error is accumulated from one vertex to
the other by summing these matrices. The optimal position for a new vertex to replace a vertex-pair collapse
is computed by solving a4� 4 linear system of equations.

Popović and Hoppe [15] introduce the operator of a generalized vertex split to represent progressive
changes to the geometry as well as topology for triangulated geometric models. Progressive use of this
operator results in representation of a geometric model as aprogressive simplicial complex. They use an

3



error metric based upon Euclidean distance, surface discontinuities, local surface area, and mesh foldover
penalties to prioritize amongst a candidate set of vertex pairs, obtained from a Delaunay triangulation of the
model.

Luebke and Erikson [16] use a scheme based on defining atight octreeover the vertices of the given
model to generate hierarchical view-dependent simplifications. In a tight octree, each node of the octree is
tightened to the smallest axis-aligned bounding cube that encloses the relevant vertices before subdividing
further. If the screen-space projection of a given cell of an octree is too small, all the vertices in that cell
are collapsed to one vertex and the parent cell is then considered for the same test. Adaptive refinement is
performed analogously. This approach can accept input datasets with degeneracies. Luebke and Erikson’s
approach can perform view-dependent genus simplification based on screen-space projection, polygon ori-
entation as well as generate a user-specified triangle count approximation for a given view.

2.2 Topology-varying Surface Reconstruction

Much of previous work in surface reconstruction has focussed on reconstructing a surface of a single topo-
logical type. However,�-hulls allow one to generate a family of polyhedral objects with varying topology,
as a function of an input parameter�, for a given set of points.

Given a set of pointsP , a ballb of radius� is defined as anempty�-ball if b\P = �. For0 � � � 1,
the�-hull of P is defined as the complement of the union of all empty�-balls [17, 18]. Three-dimensional
�-shapes have been defined on the Delaunay tetrahedralizationD of the input pointsP by Edelsbrunner and
Mücke [19]. LetbT be the circumsphere of ak-simplex�T and let its radius be�T . LetGk;�; 1 � k � 3

be the set ofk-simplices2 D for which bT is empty and�T < �. An �-complex ofP , denoted byC�

is the cell complex whosek-simplices are either inGk;� or they bound the(k + 1)-simplices ofC�. The
�-shape ofP denoted byS� is the union of all simplices ofC�. Thus, an�-shape of a set of pointsP is a
subset of the Delaunay triangulation ofP . Edelsbrunner [18], has extended the concept of�-shapes to deal
with weighted points (i.e. spheres with possibly unequal radii) in three dimensions. An�-shape of a set
of weighted pointsPw is a subset of the regular triangulation ofPw. Recent work by Bernardini and Bajaj
[20] uses�-hulls to deal with point-sets that represent a point sampling of mechanical CAD (polygonal or
otherwise) models. Their work primarily deals with reconstruction of surfaces from unorganized sets of
points, although it could potentially be used for genus-simplification of reconstructed surfaces if the input
is either (a) a collection of unorganized set of points, or (b) a sampling of points from a given polygonal
dataset. The existing work for�-hulls deals with only point- and sphere-based datasets.

Our research extends the concept of�-hulls to polygonal datasets for performing genus-reducing simpli-
fications. The primary targets of our research are the interactive three-dimensional graphics and visualization
applications where topology can be sacrificed if (a) it does not directly impact the application underlying
the visualization and (b) produces no visual artifacts. Both of these goals are easier to achieve if the simpli-
fication of the topology is finelycontrolledand has a sound mathematical basis. In Section 3 we outline our
approach that has these properties.

2.3 Crack Repair in CAD Models

Real-life CAD models have several kinds of defects including coincident, intersecting, and incorrectly ori-
ented polygons, T-junctions, T-edges, and cracks.

Several researchers have addressed the problem of repairing cracks in CAD models. Barequet and
Kumar [21] shift vertex positions using a heuristic based on area of the missing surface in merging two can-
didate edges of a crack. Murali and Funkhouser [22] adopt a solid-based approach in which they subdivide
an imperfect model into a set of solid regions and then generate a correct triangulation enclosing the solid
regions. Turk and Levoy [23] address the related issue of joining two polygonal meshes separated by a small
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distance by clipping one with the other. Bøhn and Wozny [24] fill cracks by using local techniques. Baum
et al. [25] handle the problem of cracks in meshes by grouping together vertices that are closer than a given
value�.

None of these methods can be easily generalized to be able to handle genus simplifications, whereas
our approach can naturally correct cracks as well as generate genus-reducing simplifications. To be fair to
the above methods, we would like to point out that several of them do more than just crack repair for CAD
models, for example they consistently orient polygons, handle coincident polygons, and register multiple
meshes; our approach cannot accomplish such general repair.

3 Genus simplification

The intuitive idea underlying our approach is to simplify the genus of a polygonal object by rolling a sphere
of radius� over it and filling up all the regions that are notaccessible to the sphere. This is the same
as the underlying idea of�-hulls over point-sets. The problem of planning the motion of a sphere amidst
polyhedral obstacles in three-dimensions has been very nicely worked out by Bajaj and Kim [26]. We use
these ideas in our approach. Let us first assume that our polygonal dataset consists of only triangles; if
not, we can triangulate the individual polygons [27, 28, 29]. Planning the motion of a sphere of radius
�, sayS(�), amongst triangles is equivalent to planning the motion of a point amongst “grown” triangles.
Mathematically, a grown triangleTi(�) is the Minkowski sum of the original triangleti with the sphere
S(�). Formally, Ti(�) = ti � S(�), where� denotes the Minkowski sum which is equivalent to the
convolution operation. Thus, our problem reduces to efficiently and robustly computing the union of the
grown trianglesTi(�). The boundary of this union,@

Sn
i=1 Ti(�), wheren is the number of triangles in the

dataset, will represent the locus of the center of the sphere as it is rolled in contact with one or more triangles
and can be used to guide the genus simplification stage. We should point out here that our choice of theL1
metric over theL2 metric buys us robustness and efficiency but sacrifices the rotational invariance of error
tolerance in the conventional Euclidean (L2) sense.

3.1 Alpha prisms

We refer to an�-grown triangleTi(�) as an�-prism. For general polygons, computing a constant radius
offsetting is a difficult operation in which several degeneracies might arise [26]. However, for triangles this
is an easy, robust, and constant-time operation. Computing the union ofTi(�); 1 � i � n can be simplified
by considering the offsetting operation in theL1 or theL1 metrics. This is equivalent to convolving the
triangleti with an oriented cube (which is the constant distance primitive in theL1 or theL1 metrics, just
as a sphere is in theL2 metric). Offsetting a triangleti in theL1 or theL1 metrics yields aTi(�) that
is a convex polyhedron (result of the convolution of an oriented cube with the triangleti). Example of a
two-dimensional�-prism in theL1 distance metric is shown in Fig. 2.

We choose theL1 distance metric over theL1 metric because the former results in axially-aligned
unit-distance cubes, which are easier to deal with in union and intersection operations. We have efficiently
implemented the construction of�-prisms for theL1 metric as outlined in Section 6.1.

3.2 Overview of our approach

Fig. 3 gives the overview of the stages involved. For clarity, the overview in the figure is given in two
dimensions; extension to three dimensions (which we have implemented) is straightforward. Let us consider
the behavior of our approach in the region of a two-dimensional “hole”abcde (shown unfilled). We first
generate the�-prisms (Fig. 3(b)), compute their union (Fig. 3(c)), and generate a valid surface triangulation
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(a) (b)

Figure 2: (a) Triangle andL1 cubes (b)� prism

(a) (b) (c)

Figure 3: Overview of the triangulation algorithm

from the union (Fig. 3(d)). The result of this process as shown for this example adds an extra triangleabe

in the interior of the regionabcde. This extra triangle is added in the region where the orientedL1 cube of
side2� could not pass through.

The computation of the union of the�-prisms,
Sn
i=1 Ti(�), under theL1 metric is simply the union of

n convex polyhedra. The union ofn convex polyhedra can be computed from their pairwise intersections.
Intersection of two convex polyhedra withp andq vertices can be accomplished in optimal time O(p +

q) [30]. A simpler algorithm to implement takes time O((p+ q) log(p+ q)) [31].
With our approach one could, in principle, compute the union of�-prisms over the entire polygonal

object (and not just along the boundary of the region of interest as shown in Fig. 3). This will result in
automatic identification of the regionabcde as being partially inaccessible to theL

1
cube of side2�, and

therefore a candidate for getting filled. In practice, we have observed that the regions on an object that actu-
ally participate in simplification of the genus are few. As a result, a lot of effort is spent in processing those
regions of the object that ultimately do not result in any simplifications. To avoid this extra computation and
rapidly identify such regions that can be partially or completely triangulated we use a heuristic as outlined
next.

3.3 Determination of tessellation regions

We define atessellation regionon an object as the region that is partially or completely inaccessible to an
L
1

cube of side2�. A tessellation region is a closed-connected region bounded by atessellation chain. A
tessellation chain consists of a linear sequence of edges – thetessellation edges. In Fig. 3, the tessellation
edges arefab; bc; cd; de; eag, the tessellation chain is(abcdea), and the tessellation region is the unfilled
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polygonal region(abcde).
There are three main stages in determination of the tessellation regions. We first determine the global

set of tessellation edges that forms the boundaries of all the regions that need to be tessellated on an object.
We next organize the tessellation edges into a set of tessellation chains. A tessellation chain is defined as a
sequence of connected tessellation edges whose every vertex is adjacent to exactly two tessellation edges,
except the first and the last vertices which can have a different degree of tessellation edges. The third stage
involves orienting each tessellation chain so that the tessellation region lies on its left side (assuming that
the polygons are oriented counterclockwise).

Determination of tessellation edges In principle, it is possible to determine all tessellation regions (and
hence tessellation edges) from the union of�-prisms over the entire polygonal object. However, this is
rather slow and we have observed that in practice for most mechanical CAD models the genus-reducing
simplifications occur in well-defined regions. To efficiently determine the tessellation edges we currently
use the heuristic that genus-reducing simplifications usually occur in the neighborhood of sharp edges. We
define asharp edgeto be one for which the dihedral angle between the neighboring triangles is greater than
some threshold�; we currently use the constant� = 700. We have found this to be a good heuristic for
mechanical CAD models.

Determination of tessellation chains After we have determined the tessellation edges, they are initially
stored as anedge soup– an unorganized collection of edges. We organize the tessellation edges into tessella-
tion chains by using a linear-time depth-first scanning strategy. At the end of this stage we have tessellation
chains as shown in Fig. 4.

Figure 4: Tessellation chains

Orienting tessellation chains For each tessellation chain we need to determine the side on which the
tessellation region will lie. Once this side has been determined, we orient the tessellation chain such that
the tessellation region lies on its left. If we were to use the global information from a completely computed
�-hull of the polygonal object, determination of the orientation would be quite easy, although expensive. To
speed-up this stage, we use the heuristic that the tessellation regions have a larger variation of the surface
normal. This heuristic works quite well for mechanical CAD models for which almost all genus-reducing
simplifications occur in holes, tunnels, or sharp concavities in regions that are otherwise flat. Orientation of
the tessellation chains helps in tiling as well as removal of the internal triangles as discussed next.
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3.4 Generating a valid surface triangulation

We consider those verticesui of the union of�-prisms,
Sn
i=1 Ti(�), that belong to two or more�-prisms.

For each vertexui, we consider every pair of�-prismsTj(�) andTk(�) to whichui belongs. If we center
theL1 cube of side2� at ui, it will touch two edges (sayel andem), one from each triangletj and tk .
Let the edgeel = (vl0; vl1), and the edgeem = (vm0

; vm1
) For example in Fig. 3,ui = g1, el = ab, and

em = ae. If the L1 cube of side2� centered at the pointui contains a pair of non-adjacent verticesvp
andvq out of fvl0 ; vl1; vm0

; vm1
g (in this example, verticesb ande), then we add the edge(vp; vq) (in this

example, we add edgebe) to the set of diagonal edges that will be used to generate the surface triangulation.
In this example if theL1 cube atg1 did not contain either of the verticesb or e, we would not have added
any diagonal edge.

At the end of this stage we have the superset of the diagonals required for the final triangulation as well
as a collection of oriented tessellation chains. The diagonals and the oriented tessellation chains are used in
the surface reconstruction approach as outlined in [32]. The objective function that we use for optimization
in the surface reconstruction is minimizing the length of the diagonal edges used (shortest edge first). This
gives us a unique and consistent triangulation.

As a result of our triangulation above, some triangles that were initially on the surface of the object
now become interior as shown in Fig. 5. We identify and remove the internal triangles as follows. All the
tessellation regions that we covered have oriented tessellation boundaries. Walking along the direction of
the tessellation chain, we classify the left side as interior (i.e. the region that has just been covered) and
the right side as exterior (this assumes counter-clockwise orientation of polygons). We start from a triangle
belonging to the input object that lies to the left (i.e. the interior) of an oriented tessellation chain and spread
out in a breadth-first manner until we hit one of the hole edges or another triangle that has been similarly
traversed. All triangles that are thus traversed are marked as interior and eliminated. In Fig. 5(c) the patched
triangles are shown in green and the interior triangles that are eliminated are shown in yellow.

                        

(a) (b) (c) (d)

Figure 5: Overview of the genus-reducing simplification

4 Removal of Protuberances

Current geometry-based simplification techniques are based on the local geometric properties such as cur-
vature and distance along the local normal. Most of these techniques do not take the gross shape of the
object into account. Alpha-hulls have been used in the past to define the shape of a set of unorganized points
[17]. Our approach that is based on a three-dimensional variant of�-shapes is consequently well-suited to
working on the problem of identifying and simplifying small protuberances and features.

Let us reconsider the concept of�-hulls in three dimensions. If we ignore the internal cavities, the�-hull
for a set of points intuitively corresponds to the surface defined by a sphere of radius� as it is rolled around
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the points. When the value of� is 0, the�-hull is simply the collection of the input points. As the value of
� is increased, more and more points get connected to each other. With an increasing value of� the regions
of concavities in the external surface get progressively ”filled”. Finally, when� =1, all concavities in the
external surface are filled and thealpha-hull is the convex hull of the input points. This is the basic idea
behind our approach to fill up holes and regions of sharp concavities for polygonal models.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Simplification of protuberances

In several finite-element applications where approximations to the original model are acceptable it is
important to remove small protuberances from the input model without changing the surrounding geometry
too much. In virtual environments too, it may be important to be able to remove such small-scale features
without affecting their neighborhood to get a better approximation to the overall shape. As an example
consider the object in Fig. 6(a). A local-geometry-based approach might simplify it to an object as shown in
Fig. 6(b). However, what might be more desirable in certain situations is the object represented in Fig. 6(f).

We have observed that we can very easily extend our code to simplify away the protuberances by simply
moving theL1 cube on the interior of the object as opposed to the exterior. The protuberances on the
outside of the object look like concavities from the inside. Therefore just as our approach looking at an
object from the outside fills-up the concavities, holes, and tunnels, it should be able to simplify away the
protuberances if we considered the object from inside. We have tried this and it works very nicely. This is
illustrated in Fig. 6 for the case of theL2 primitive – a sphere. Figs. 6(c), (d) show the results of rolling the
sphere on the exterior of the object and the identification and removal of concavities. Figs. 6(e), (f) show the
results of rolling the sphere on the interior of the object and the identification and removal of protuberances.
As far as the implementation is concerned, the rolling of aL2 sphere orL1 cube on the interior as opposed
to the exterior is accomplished by simply flipping (inverting) the normals of every triangle in the polygonal
model to conceptually turn the object inside-out.
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(a) Original 612 triangles (b) Protuberance 12 triangles (c) Edge collapse 120 triangles

Figure 7: Comparing protuberance simplification with edge collapse

Fig. 7(c) shows the results of a topology-preservingedge collapse algorithm for the same error tolerance
as used in Fig. 7(b). The reason why the model in Fig. 7(c) did not simplify any further is similar to the
reason why genus-simplifications allow better overall simplifications, which is that the topology-preserving
simplifications block simplifications by not allowing creation of non-manifold edges (i.e. edges that share
three triangles) and vertices. This led us to explore if we could extend our genus-simplifying approach to be
able to remove protuberances.

5 Repair of Cracks

Cracks arise in CAD models due to both human as well as computer-generated errors. Some of the reasons
underlying these errors are:

(a) too much time is required to correct or avoid all cracks and draftsmen working on large projects under
deadline pressures resort to various shortcuts, and

(b) tessellation algorithms during CSG boolean operations by commercial modelers on curved surfaces
often yield cracks due to improper handling of singularities.

Cracks cause several problems in the computer graphics pipeline. In global illumination computations
cracks cause distracting light leaks. Cracks also cause artifacts such as shading discontinuities and aliasing.
Algorithms that convert triangular meshes to triangle-strips terminate prematurely at cracks leading to sub-
optimal conversions. A large number of multiresolution hierarchy creation algorithms which rely on the
local geometry information fail to work with such cracks.

Our work on simplification of the genus extends naturally to handling of cracks in real-life polygonal
datasets. We have tested our implementation on several meshes with cracks and missing triangles and have
achieved encouraging results. An example CAD object is shown in Fig. 8.

Most commercial radiosity packages currently compute the radiosity solution on a per-polygon basis
leaving topological cracks where two polygons meet. An example showing crack repair for the mesh gen-
erated by a commercial radiosity package is shown in Figure 9. In our implementation, all one-sided edges
(i.e. edges that have only one adjacent triangle) are currently assumed to be candidate edges for defining a
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(a) 456 triangles (b) 66 triangles

Figure 8: Crack repair for an industrial CAD part

(a) Radiositized dataset (b) Cracks in underlying mesh (c) Repaired mesh

Figure 9: Crack repair for radiosity dataset

crack and are considered as tessellation edges for further processing. Most of the processing for cracks is
similar to the processing for genus simplifications. This is useful in that it allows us to handle cracks as a
special case of genus simplification.

To speed up the processing for cracks we have implemented a few differences from the case for genus
simplification. In our current implementation for genus-simplifications we define the tessellation edges and
tessellation regions based on a heuristic (Section 3.3). However, our definition of the tessellation edges
and tessellation regions for the cracks is clearly accurate and not a heuristic. For the case of cracks, unlike
for genus simplification, we do not need to remove any internal triangles left after patching over the crack.
As a quick overview,�-prisms are constructed around the crack edges just as they are around any other
tessellation edges. The union of the�-prisms is used for defining the candidate diagonals and these are then
used for generating a valid triangulation. Thus, we fix cracks by adding extra triangles to the surface. Some
of the triangles that we add may be long and skinny. For example, a T-junction crack is fixed by adding a
degenerate triangle. These are appropriately handled during the geometry simplification stages.

6 Implementation details

6.1 Efficiently constructing alpha prisms

The�-prism is the convex hull of the three axially alignedL1 cubes, each of side2� units, centered at
each of the three vertices of a triangle. There are several sets of coplanar points for this case and as a
result the traditional methods of computing convex hulls do not work robustly here. One solution to this
robustness problem is to perform perturbation of all the input points [33, 34]. Although such approaches
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guarantee removal of all degeneracies, they require multi-precision arithmetic which is slow. Besides, such
perturbations lead to generation of unnecessary sliver triangles in the union of the�-prisms. To overcome
these limitations, we decided to adopt a different, although specialized, approach That works quite efficiently
and robustly. We next outline the basic idea of this approach.
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Figure 10: Fast computation of alpha prisms

We associate a 6-bit vector with each vertex, edge, and face of the threeL1 cubes. Each of the six bits
of the bit-vector associated with a vertexv is 1 if and only if the corresponding property holds amongst all
of the24 vertices :fminimum x, maximum x, minimum y, maximum y, minimum z, maximum zg. Thus,
bit[0] of a vertex will be1 if its x-coordinate has the minimum value amongst all the24 vertices; it will be
0 otherwise. The edge bit-vector is computed as the logical bit-wise AND of its two vertices’ bit-vectors.
The face bit-vector is the logical bit-wise AND of its four edges’ bit-vectors. The�-prism can be computed
by using the information from these vertex, edge, and face bit-vectors. For instance, all the cubes’ faces
that have non-zero bit-vectors belong to the�-prism. Details of this approach are outside the scope of this
paper; they will be described elsewhere. The computation of the�-prism using this strategy for the two-
dimensional case (where we use 4-bit vectors) is shown in Fig. 10. Notice that only those edges of theL1
squares that have non-zero bit-vectors are a part of the two-dimensional�-prism (analogous to the faces of
theL1 cubes in three dimensions).

6.2 Efficiently intersecting alpha prisms

The�-neighborhoodof a triangleti is defined as the set of all trianglestj such that the intersection of their
�-prisms is non-null,Ti(�)

T
Tj(�) 6= �. Every such pair of�-prisms is defined to be�-closeto each

other. The first stage in generating a valid surface triangulation is to identify the pairs of�-prisms that are
�-close to each other.

For practical values of�, which are relatively small, the average size of the�-neighborhood of a triangle
has been empirically observed to be a small constant. We use a global grid to speed up the determination of
the�-neighborhood for each triangleti. Each side of the cubical grid is2� units, to minimize the number
of neighboring cubes that have to be considered for determining the�-neighborhood of a given triangle.

The�-prisms’ intersection calculation is based on a face-by-face intersection procedure. To compute
the union ofN �-prisms, we start with the first prism and atith step (2 � i � N ) we compute the union
of the ith �-prism with the currently computed union of1 to i � 1 �-prisms. This procedure reduces the
total number of intersection computations since it avoids considering those faces that are in the interior of
the union of�-prisms at theith stage.
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7 Results and discussion

We have implemented the approach outlined above and have obtained very encouraging results. We ran our
implementation on one R10000 processor of SGI Challenge for all the results reported here. The various
mechanical parts on which we tested our algorithm and reported our results are shown in Figs. 1, 11 – 13.

An example of a multiple levels-of-detail hierarchy can be seen in Fig. 11. Here the object complexity
was reduced as follows: (a) original object had 756 triangles; (b), (c): genus reduction removed the two
holes on the side and followed this by geometry simplification, (d), (e): a second-level genus-preserving
simplification removed a hole at the top and followed by a geometry reduction to yield a final object (f) with
298 triangles. Our results for higher polygon-count objects appear in Figs. 12 and 13.

(a) 756 triangles (b) (c)

(d) (e) (f) 298 triangles

Figure 11: Alternating genus-preserving and genus-reducing simplifications

We chose the Simplification Envelopes [1] approach to perform our genus-preserving simplifications.
All error tolerances (� and �) given in this section are specified as the percentage of the diagonal of the
bounding box of the object. We first simplified the given objects using the genus-preserving approach with
a tolerance of�. Then on this simplified object we compared the results of the following two simplification
strategies:

(a) genus-reducing simplifications with a tolerance of� followed by genus-preserving simplifications with
a tolerance of�

(b) genus-preserving simplifications with a tolerance of�+ �

The results of our comparisons are given in Table 1. As can be seen, performing genus-reducing simpli-
fication with genus-preserving simplifications vastly improves the overall simplification ratio. The timings
in the following table are in units of seconds, minutes, and hours and are accordingly marked by s, m, and
h, respectively. Not only did we observe the genus-reducing simplifications improved the overall simplifica-
tion ratio substantially, we also observed that the times taken by the genus-reducing stage were reasonably
small. This is partly because of our use of heuristics as given in Section 3.3 which we have observed work
quite well for mechanical CAD datasets.
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(a) 74,168 triangles (b) 7,486 triangles

Figure 12: Wire-ways from a notional submarine

(a) 158,728 triangles (b) 2216 triangles

Figure 13: Batteries of a notional submarine
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Original Genus-Preserving Genus-Reducing and Genus-Preserving

Object Simplification Genus-Preserving Simplification Simplification Ratio of

Name Num � Time Num Genus Genus Num � Time Num Simplifcation

Tris Tris Reducing Preserving Tris + Tris Improvement

� Time � Time �

Box 1612 1.0 30 s 166 2.0 0.3 s 1.0 2.0 s 14 3.0 4.2 s 138 9.86

Sphere 2058 5.5 100 s 432 11.0 0.3 s 5.5 7.3 s 136 16.5 19.2 s 162 1.19

Block 17644 0.4 24 m 2054 0.8 5.6 s 0.4 20 s 78 1.2 280 s 1622 20.79

Wireways 74168 0.01 34 m 69612 0.01 20 s 0.03 15 m 7486 0.05 23.4 m 38400 5.12

Fixture 74396 0.3 5:30 h 10806 0.6 129 s 0.3 42 s 62 0.9 11:22 h 7300 117.7
Batteries 158728 0.005 42 m 126220 0.005 13.8 s 0.01 5.2 m 2216 0.015 28.5 m 124806 56.32

Table 1: Results of genus-reducing and genus-preserving simplifications

The figures for block and fixture can be seen in the conference-version of this paper [11]. Batteries from
the Auxiliary Machine Room dataset of a notional submarine from Electric Boat Corporation are shown
in Figs. 14, 7, and 13. Wireways model consists of hollow tubes that contain the wiring for the notional
submarine model from Electric Boat Corporation and appear in Fig. 12.

(a) 612 triangles (b) (c)

(d) (e) (f) 12 triangles

Figure 14: Alternating geometry and protuberance simplifications

As can be seen from Table 1 and the accompanying figures, our approach indicates promising results
for genus reduction, protuberance simplification, and crack repair. Using our approach for genus-reductions
and protuberance simplifications with traditional geometry simplification techniques we have been able to
achieve significant simplification factors over what genus-preserving geometry simplifications alone could
accomplish.
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8 Conclusions and future work

We have presented an approach that performs a controlled simplification of the genus of polygonal ob-
jects. This approach works quite well in conjunction with the traditional genus-preserving simplification
approaches and yields substantially lower representation complexity objects than otherwise possible. Our
approach can work in presence of limited kinds of degeneracies, such as T-junctions and T-edges, that are
quite widespread in real-life mechanical CAD datasets. Our approach is easily extensible to be able to sim-
plify away small protuberances and repair cracks in CAD models. Currently we only use the size of the
cross-section of the protuberance for removing it. Further work needs to be done to examine other criteria
such as area and/or volume of the protuberances.

We currently use heuristics that rapidly detect holes and other cavities commonly found in CAD models.
We plan to further explore other heuristics that will rapidly determine the tessellation regions on other
kinds of scientific visualization datasets. Our approach currently works only for polygonal objects. Its
generalization to objects described by higher-order algebraic patches will be an interesting area for future
work.

Our approach does not at present handle certain degeneracies such as coincident polygons, self-intersecting
meshes, and meshes with inconsistent orientations of polygons. Alpha hulls have been shown to work quite
well for reconstructing surfaces from unorganized collections of points. It should be possible to extend the
current work and merge it with that line of research to be able to handle the above degeneracies as well.

Our approach is based upon the concept� hulls which have in the past been found to be useful in
determining the accessibilities. This raises the possibility of extending our approach to be able to do the
preprocessing required for other accessibility-based graphics algorithms such asaccessibility shading [35].
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