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Abstract

Development of fast computational methods to solve the
Poisson-Boltzmann equation (PBE) for molecular elec-
trostatics is important because of the central role played
by electrostatic interactions in many biological processes.
The accuracy and stability of the solution to the PBE
is quite sensitive to the boundary layer between the sol-
vent and the solute which defines the solvent-accessible
surface. In this paper, we propose a new interface-
layer-focused PBE solver for efficiently computing the
electrostatic potential for large molecules. Our method
analytically constructs the solvent-accessible surface of
molecules and then builds nested iso-surface layers out-
wards and inwards from the surface using the distance
field around the surface. We then develop a volume sim-
plification algorithm to adaptively adjust the density of
the irregular grid based on the importance to the PBE
solution. We also generalize finite difference methods on
our irregular grids using Taylor series expansions. Our
algorithm achieves about three times speedup in the iter-
ative solution process of PBE, with more accurate results
on an analytical solvable testing case, compared with the
popular optimized DelPhi program. Our approach can
also be applied directly to solve partial differential equa-
tions arising in other application domains.

1 INTRODUCTION

Electrostatic interactions are of central importance for
many biological processes [Leach 2001]. Electrostatics
influences various aspects of nearly all biochemical reac-
tions [Baker et al. 2001], such as macromolecular fold-
ing and conformational stability. It also determines the

structural and functional properties of biological sam-
ples, such as shapes, binding energies, and association
rates [Sharp and Honig 1990]. So the modeling of elec-
trostatics in molecular modeling packages [Humphrey
et al. 1996] has great practical, as well as, theoretical
importance, for structure-based drug design and protein
folding.
Electrostatic properties of biological samples can be

modeled by quantum mechanical methods or classical
electrostatics. Quantum mechanical methods are more
accurate, but due to their immense computational de-
mands, can only be applied to small molecules. Clas-
sical electrostatics interactions are modeled as interac-
tions between partial atomic charges. They depend not
only on 3D structure of molecules and charge distribu-
tions, but also on the environment. Biological processes
occur in aqueous solution, so solvent plays an important
role in determining the electrostatics of solute molecules.
Due to the huge computational cost, solvent properties
are normally described in terms of average values. That
means, instead of treating each solvent atom explicitly,
we treat them as a continuum with average properties.
The more important solute molecules are described in
atomic details [Honig and Nicholls 1995]. These result
in a Poisson-Boltzmann equation (PBE) for describing
the electrostatic interactions in solution.
In this paper, we propose a new algorithm for effi-

ciently solving PBE. Our method is based on the ob-
servation that the accuracy and stability of the solution
to PBE is quite sensitive to the boundary layer between
the solvent and the solute. So an accurate construction
of this boundary with adaptively controlled grid den-
sity should improve the solution. In our algorithm, we
first analytically construct the solvent-accessible surface
of the molecules, then build a tetrahedral decomposi-
tion of the 3D space around the surface and also build
a distance field from the surface. Next we build iso-
surfaces by the marching-tetrahedra method on the dis-
tance field with progressively greater distances. This
results in nested isosurfaces at varying distances from



the solvent-accessible surface. After that, we apply a
volume simplification algorithm to simplify the tetrahe-
dral grid and adaptively adjust grid density based on
the influence it exerts on the solution. We maintain a
higher resolution for the solution-sensitive region in the
vicinity of the solvent-accessible surface. We have found
that this improves the accuracy and stability of the so-
lution while speeding up the computation. In our work
we have generalized the traditional finite difference com-
putations on regular grids to irregular grids by Taylor
series expansions. We validate our algorithm on an an-
alytical solvable case and compare the results with the
popular DelPhi program.
The main contributions of this paper are:

1. We design an efficient algorithm to solve PBE
by taking advantage of the exact geometry around the
solution-sensitive region.

2. We show how to achieve better results by using
an application-driven hierarchy of detail for 3D space
decomposition.

2 PREVIOUS WORK

Modern electrostatic models are based on Poisson-
Boltzmann equation (PBE). PBE is non-linear but can
be approximated by a linear equation with a possible
analytic solution [Lee and Richards 1971; Tanford and
Kirkwood 1957], if there are no highly charged molecules
or high ionic strengths. Among numeric methods to
solve PBE, the finite difference method (FDM) [War-
wicker and Watson 1982] is the most widely used one, in
which the molecule is mapped onto a three-dimensional
grid. Ionizable atoms are assigned to grid points and the
electrostatic potential at each grid point is calculated us-
ing the finite difference approximation of the PBE. The
accuracy of the results is highly dependent on grid spac-
ing, while the computational cost increases steeply with
the number of grid points. One approach to reduce the
cost is called focusing [Gilson et al. 1988], in which the
mesh of the grid is reduced only in the vicinity of ion-
izable groups of particular interest with potentials from
coarser grids used as initial guesses.
Adaptive space-subdivision approach [Baker et al.

2000; Baker et al. 2001; Holst et al. 2000] has been
used to address the high cost of using a regularly-spaced
grid. This approach increases the accuracy of the so-
lution by explicitly giving a higher spatial resolution to
the solvent-solute boundary region, to which the solu-
tion and the rate of convergence is highly sensitive. The
drawbacks are the price for slow convergence resulting
from the over-subdivision around the boundary region
and the difficulty in exactly placing the points on the
solute-solvent boundary.

In applications such as computational fluid dynamics,
adaptive mesh refinement (AMR) techniques [Berger and
Colella 1989; McCormick 1989] have been developed to
refine the grid only in the regions where it is needed.
They do not incur the over-subdivision problem. They
achieve this by making their mesh refinements quite flex-
ible so that the coarser and finer mesh do not have to
coincide at their boundaries. In our approach we use
similar ideas for efficiently computing molecular electro-
statics by using the solvent-accessible surface boundary.

3 MOLECULAR ELECTROSTAT-
ICS BACKGROUND

The main trends of molecular electrostatics theory fol-
low the principles of classical electrostatics, treating the
solvent as a continuum in terms of average value. In this
section, we lay out the physical foundations for molecu-
lar electrostatics.
The electrical potential satisfies the Poisson equation

in a uniform dielectric medium [Jackson 1975]:

�2φ(−→r ) + 4πρ(−→r )
ε

= 0

where φ(−→r ) is the electrostatic potential, and ρ(−→r ) is
the charge density. ε is the dielectric constant in uniform
media.
If the charges are continuously distributed, the elec-

trical potential is given by the following integral:

φ(−→r ) =
∫∫∫

ρ(
−→
r′ )

ε
∣∣∣|−→r −−→

r′
∣∣∣ |d

−→
r′

where ρ(
−→
r′ ) is the charge density. The integral is over

the space.
If the dielectric ε varies through space, then we arrive

at a general form of the Poisson equation:

�[ε(−→r )∇(φ(−→r )] + 4πρ(−→r ) = 0

where ε(−→r ) is a function of position. Normally the so-
lute is treated as a uniform medium with a low dielectric
constant of about 2 ∼ 4, relative to the dielectric con-
stant in vacuum. The solvent is also treated as a uniform
medium with a relative dielectric of about 80 [G. Allen
(editor) 1999].
Incorporating the environmental response, we get a

general equation for the molecular electrostatics the
Poisson-Boltzmann Equation (PBE) [Sharp and Honig
1990]:

�[ε(−→r )∇(φ(−→r )]− κ′2(−→r ) sinh[φ(−→r )] + 4πρ(−→r ) = 0

where κ′ is the modified Debye–Huckel parameter and
defined as:

κ′2 =
8πNae2I

1000kT



where Na is Avogadro’s number, e is the electron charge,
k is Boltzmann constant, T is the absolute tempera-
ture, and I is the ionic strength of the bulk solution.
The variables φ, ε, κ′, and ρ are all functions of the
position vector −→r . The general PBE above incorpo-
rates electronic and dipole polarization through ε and
ion-screening through κ′.

4 INTERFACE-FOCUSED FDM

We find from previous discussion that the region around
the solvent-accessible surface is critical to the accuracy of
the FDM solution of PBE. This is due to two facts. First,
all the atomic charges are within the molecule. Second,
there are huge differences in the dielectric constants and
ionic strengths between the two regions separated by the
boundary layer. As several biological processes occur at
or near the molecular surface, the accuracy of the solu-
tion to PBE close to this boundary layer is critical. Not
coincidentally, the stability and accuracy of numerical
methods also depend largely on the discretization of the
grid in this region. To the best of our knowledge, no
previous algorithm for solving PBE for molecules exists
that builds the tetrahedral solution grid based on the
solvent-accessible surface at the solvent-solute bound-
ary. In this paper we present a new algorithm to solve
PBE more efficiently by building an adaptive tetrahedral
space-decomposition about the solvent-accessible molec-
ular surface. The main idea is to give higher priority
and resolution to the boundary region, and lower prior-
ity and resolution to other non-critical regions. We also
adjust the grid density to be close to uniform in each
region.

4.1 Analytical Solvent-accessible Surface

Previous methods to solve PBE approximate the solvent-
accessible surface after building a 3D grid around the
molecule. For each grid point, a binary marker indicates
whether it is inside the molecule or inside the solvent.
The solvent-accessible surface is then defined as passing
between those grid points which have different markers.
This way, the accuracy of the surface is limited to the
grid mesh resolution on which it is generated, and the
real surface points do not in general, coincide with the
preset grid points.
Several analytical solvent-accessible surface genera-

tion algorithms have been published [Akkiraju and
Edelsbrunner 1996; Bajaj et al. 2003; Klein et al. 1990;
Sanner and Olson 1997; Varshney et al. 1994]. After we
analytically generate the solvent-accessible surface using
the approach in [Varshney et al. 1994], we incorporate
it in the 3D grid used for the solution of the PBE. Guar-
anteeing that the grid points at the boundary layer are
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Figure 1: Marching tetrahedron

actually on the exact surface, improves the accuracy of
the algorithm.

4.2 Tetrahedral Decomposition of Space
and Iso-surface Layers Construction

The accuracy of the FDM solution to PBE depends on
the ionic strength assignment, which is zero within 2Å
from the molecular surface, and constant beyond. So we
also need to generate an accurate ionic screening sur-
face, which lies in the solvent and is 2Å away from the
molecular surface.
After we construct a 3D grid over the molecule us-

ing the exact solvent-accessible surface, we tetrahedral-
ize the volume. We use an odd/even scheme for splitting
rectilinear and curvilinear grids into tetrahedra as done
in [Max et al. 1990]. Then we generate a signed-distance
map of the space, which measures the distance of each
grid point to the solvent-accessible surface (points inside
the molecule are assigned negative distances). We use a
method similar to the one described in [Gibson 1998] to
build the distance map.
Next, we generate a sequence of iso-surfaces from the

distance map using a tetrahedral variant of the March-
ing Cubes algorithm [Lorensen and Cline 1987]. We
use tetrahedra instead of cubes for simplicity and sta-
bility. We insert new grid points into the 3D grid such
that they form surfaces at a fixed distance away from
the real solvent-accessible surface. One case of marching
tetrahedra is shown in Figure 1. Here the processing of
tetrahedron V1V2V3V0 generates triangle V4V5V6, which
splits the original tetrahedron into four new tetrahedra:
V4V5V6V0, V4V3V5V6, V1V5V3V4, and V1V2V3V5.

4.3 Volume Simplification

For accuracy, we need higher grid resolution near the
PBE solution-sensitive region around the molecular sur-
face, while for efficiency we prefer to have lower grid
resolution in regions that are away from the surface. In
regions of the grid that approximately have the same
resolution, we would like the grid density to be close to



uniform to avoid slow convergence that sometimes arises
due to very fine grid spacing. We use an adaptive vol-
ume simplification algorithm to adjust the grid resolu-
tion progressively and seamlessly based on the distance
from the molecular surface.
Our volume simplification is based on an edge-

collapse scheme. Specifically, we use a half-edge collapse
method [Pajarola 2001], in which we pick one of the end
vertices of the edge to collapse to. This guarantees that
if we collapse an on-surface edge, the new vertex will
also be on the surface. Each half-edge collapse decreases
the vertex count by one, and decreases the triangle and
tetrahedron count based on its local connectivity. As an
example, Figure 2 shows the collapse of edge E resulting
in a decimation of vertex V2 (merged with vertex V1) and
tetrahedron V0V1V2V5, while the tetrahedron V0V2V3V5

has been adjusted to V0V1V3V5.
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Figure 2: Half-Edge collapse for Tetrahedral
Grid Decimation

The purpose of the tetrahedral volume simplification
is to enable more efficient computation of the molecular
electrostatics. During the simplification, we have to be
careful not to simplify the volume into a state in which
some grid points lose part of their necessary neighbors
which are required for FDM computation. We also avoid
generating negative volume tetrahedra (i.e., tetrahedra
with a wrong orientation) by checking the sign of the
tetrahedral volumes during the simplification process.
We verify that the above conditions do not arise as a
result of a candidate half-edge collapse, before we allow
that half-edge collapse to proceed.

4.4 Derivatives for Irregular Grids

FDM solver of PBE has to compute first and second
derivatives of the 3D potential field at each grid point.
The derivatives can be computed for regular grids by
taking the finite differences between the potential value
at each grid point with values at their axis-aligned neigh-
boring grid points. The regular structure of the regular
grids makes this procedure straight forward. For irregu-
lar grids, the situation is complicated by the fact that not
only the distances between grid points vary, but also the
neighboring points are rarely axis-aligned. So instead

we compute the derivatives of the potential at each grid
point using the values at the points that define the axis-
inclusion tetrahedra of the grid point. We interpolate to
get the value at a new point which is the axis-aligned
neighbor of the grid point. Then the derivatives at the
grid point can be computed in the same way as for reg-
ular grids. This approach is similar in spirit to the ap-
proach suggested by Moore [Moore 1999], though he has
focused on irregular rectangular grids. Moore has also
done a careful error estimate for this situation.

5 RESULTS AND DISCUSSION

In this section we discuss the results obtained using our
algorithm. We have used a 2GHz Pentium 4 PC running
Windows 2000 with a nVIDIA GeForce3 graphics card.
We present results on an analytical solvable case and
compare them with the results by the well-known Del-
Phi implementation. We also show our results on real
molecular datasets and display the results on smooth
solvent-accessible molecular surfaces.
Normally it is difficult (or impossible) to obtain ana-

lytical solutions to PBE. In some special cases, we may
have analytical solutions to the linearized PBE. One ex-
ample is that of a spherical molecule with total charge q
uniformly distributed on the surface immersed in a sol-
vent containing mobile ions. The analytical solution to
this special case is [Holst 1993]:




φ(r) = q
ε2R

(
1− Rκ

1+κa

)
inside molecule

φ(r) = q
ε2r

(
1− rκ

1+κa

)
ion-exclusion layer

φ(r) = qeκa

ε2(1+κa) · e−κr

r inside solvent

where q is the total sphere surface charge and R is the
radius of the sphere. We have tested this analytical solv-
able case using both our algorithm and the DelPhi (V.4)
program. The results are summarized in Table 1. For
the testing case, we use a spherical surface charge with
a diameter of 27Å and a positive charge of 20e (where
e is the charge of an electron). The sphere is immersed
in a cubic solvent volume with each side 66Å long. The
average error in Table 1 is defined as the average of the
relative error over all the grid points. Peak-signal-to-
noise-ratio (PSNR) is defined as 20 log10(

signal energy
noise energy ).

The signal energy is defined as the sum of the squares

DelPhi Our Method

Grid size 673 1333 1993 N/A
# of pts 300,763 2,352,637 7,880,599 26,987
PSNR 8.17 19.1 25.1 27.7

Avg. error 30.88% 17.91% 13.27% 15.98%
PBE Time 0.31 sec 4.50 sec 20.09 sec 0.25 sec

Table 1: Comparison of our method with DelPhi



(a) Solvent-accessible surface (b) Lighted on-surface potential (c) On-surface potential

Figure 3: Electrostatics on SuperOxide Dismutase (SOD) dataset (red is for negative potential, and
blue is for positive potential)

(a) Solvent-accessible surface (b) Lighted on-surface potential (c) On-surface potential

Figure 4: Electrostatics on Ecoli dataset (red for negative potential, and blue for positive potential)

of the potential values over all grid points. The noise
energy is defined as the sum of the squares of the errors
over all grid points. PBE time is the time for solving the
Poisson-Boltzmann Equation. One can see from Table 1
the advantages of our method. With the same accuracy,
our method needs only 27K points instead of several mil-
lion as needed by DelPhi, and takes only 0.25 seconds
to converge, compared with several seconds by DelPhi.
For about the same amount of time, our method can be
much more accurate than DelPhi, e.g., 15.98% instead of
30.88% error. Our algorithm with 27K points has even
higher PSNR than DelPhi with about 8M points.

We next display our results for some real molecules.
The first dataset is superoxide dismutase (SOD) enzyme,
which consists of 2196 atoms. Our second dataset is
a channel on the outer membrane of the Escherichia
coli (Ecoli) bacterium molecule [Sukharev et al. 2001],
which consists of 10585 atoms. The results are shown
in Figure 3 and 4. Figures 3(a) and 4(a) display the
smooth solvent-accessible surfaces of SOD and Ecoli
membrane channel using the SURF algorithm [Varsh-
ney et al. 1994]. Figures 3(b),(c) and Figures 4(b)(c)
display the electrostatic potential on the surfaces, with
red for negative and blue for positive potential. Both

Figures 3(b) and 4(b) use the potential information to
modulate lighting color with grey for neutral potential.
An alternative visualization is presented in Figures 3(c)
and 4(c) that display the electrostatic potential informa-
tion directly, with black as neutral potential.

6 CONCLUSIONS

We have presented a new algorithm for efficiently
computing electrostatic potentials for large molecular
datasets. Our methods give higher priority and reso-
lution to the solution-sensitive region to improve the ac-
curacy and accelerate convergence rates. We build a 3D
tetrahedral partition of the space directly from an ana-
lytically constructed interface layer. We also provide an
algorithm to control the density and uniformity of the
grid by using an edge collapse scheme. Compared with
the state-of-the-art method using analytically solvable
testing case, our method is faster and more accurate.
The advantage of our algorithm in solving partial differ-
ential equations directly from the geometrical point of
view gives it a broad range of possible applications in
other application domains.
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