PixelPie: Maximal Poisson-disk Sampling with Rasterization
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Figure 1: We perform maximal Poisson-disk sampling by rasterization and occlusion culling. First, we rasterize random disks of distinct
depths (red is close, blue is far) in (a). Second, we cull the occluded disks to remove conflicting samples in (b). Third, we iterate this process
on the empty regions to obtain a maximal Poisson-disk distribution in (c). (e) and (f) show uniform and importance sampling on (d).

Abstract

We present PixelPie, a highly parallel geometric formulation of the
Poisson-disk sampling problem on the graphics pipeline. Tradi-
tionally, generating a distribution by throwing darts and removing
conflicts has been viewed as an inherently sequential process. In
this paper, we present an efficient Poisson-disk sampling algorithm
that uses rasterization in a highly parallel manner. Our technique
is an iterative two step process. The first step of each iteration in-
volves rasterization of random darts at varying depths. The second
step involves culling conflicted darts. Successive iterations identify
and fill in the empty regions to obtain maximal distributions. Our
approach maps well to the parallel and optimized graphics func-
tions on the GPU and can be easily extended to perform importance
sampling. Our implementation can generate Poisson-disk samples
at the rate of nearly 7 million samples per second on a GeForce
GTX 580 and is significantly faster than the state-of-the-art maxi-
mal Poisson-disk sampling techniques.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing 1.4.1 [Computer Graphics]: Image Pro-
cessing and Computer Vision—Digitization and Image Capture-
Sampling;

Keywords: Poisson-disk sampling, GPGPU, dart throwing, maxi-
mal sampling

1 Introduction

This paper shows how to leverage the modern graphics hard-
ware functions (shaders/depth culling) to solve a popular computer
graphics problem, the Poisson-disk distribution. Poisson-disk dis-
tributions are highly desired in many computer graphics applica-
tions, such as anti-aliasing, stochastic ray tracing, object placement,
and global illumination.

Poisson-disk distribution consists of random samples in a domain

that are at least distance r apart. In the equations below, X is the set
of samples ¢ in domain D. We follow and extend the formulations
of Gamito and Maddock [2009] and Mitchell et al. [2012].
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Equation 1 shows Poisson-disk distribution is uniform. The prob-
ability P(i € S) of a sample ¢ falling in any subset S of D is
proportional to the area of S, |, 5 di.

Equation 2 shows the minimum distance requirement. Every pair of
samples must be at least r away from each other. This eliminates the
high frequency components from an unrestricted random sample
distribution. If we draw disks of radius r around the samples, no
disk should intersect with another sample.

Equation 3 represents the maximal coverage property. S(X) repre-
sents empty regions for inserting new samples without violating the
minimum distance requirement. A distribution is maximal when
S(X) is empty.

1.1 Poisson-disk Sampling on the Graphics Pipeline

One of the most popular approaches to generating a Poisson-disk
sample set is the dart-throwing method. The traditional dart-
throwing Poisson-disk sampling algorithms sequentially throw ran-
dom darts on to the target domain and accept the new dart if it is
r away from all the previously accepted darts. Since the accep-
tance of a new dart depends on the positions of all the previously
accepted darts, this process is inherently sequential. Recent paral-
lel approaches [Wei 2008; Ebeida et al. 2011; Ebeida et al. 2012]
throw darts in a non-conflicting pattern and then meticulously fill
in the remaining empty space using spatial data-structures such as
quad-trees. If the darts are not thrown in a non-conflicting pattern
then the darts that are closer than a distance  need to be identi-
fied and appropriately culled. This check is computationally inten-
sive and also relies on spatial hierarchical data structures. In this
paper, we present PixelPie, an alternative, simpler, technique that
leverages the rasterization hardware on modern many-core GPUs
to carry out this process in a highly parallel fashion. Unlike previ-
ous work, PixelPie does not rely on hierarchical data-structures for
efficiency. Instead, its simplicity allows it to efficiently leverage the
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Figure 2: Concept overview: (a) We throw random darts into the sample domain in (a) by drawing them as solid disks (b). We remove the
disks with occluded center in (c) as they violate the minimum distance requirement. We repeat this process on the empty regions in (d) until

we obtain a maximal Poisson-disk distribution in (e).

highly-optimized graphics pipeline on GPUs. Figure 2 presents a
overview of PixelPie. We use the graphics pipeline to perform 1)
dart throwing and 2) conflict removal in parallel.

1. We throw random darts into empty regions by rasterizing them
as circular disks into a depth map. We cast the problem of
conflict checks as an occlusion detection problem. We use the
depth test feature of the GPU to perform this efficiently.

2. We read the depth map to identify and remove the occluded
disks. The unoccluded disk centers become part of the final
sample set. We iterate this process on the empty regions to
attain maximal coverage.

1.2 Contributions

1. We present a simple algorithm, PixelPie, for generating
Poisson-disk distribution by casting it as an occlusion-culling
problem using programmable shaders and rasterization.

2. PixelPie efficiently leverages the highly-optimized and paral-
lel graphics operations on the modern GPUs. We attain max-
imal sampling coverage with a small number of iterations.

3. PixelPie is easily extensible to importance sampling by sim-
ply changing the radii of the disks based on the underlying
importance map.

4. We present angular distribution of nearest neighbors to quan-
tify the bias of a Poisson-disk distribution. We show how
subpixel-centered samples can substantially reduce the bias
for discrete sampling approaches.

PixelPie approximates circular disks with anti-aliased discrete disks
and uses the GPU to efficiently perform parallel conflict checks.
In comparison with recent algorithms [Bowers et al. 2010; Ebeida
et al. 2011; Ebeida et al. 2012; Xiang et al. 2011] that use the GPU
as a parallel computer with CUDA and OpenCL, PixelPie uses the
hardware rasterizer to achieve a very high performance.

We hope that this will show the potential of casting other problems
to the graphics hardware for significant performance gains.

The rest of the paper is organized as follows: Section 2 reviews the
previous work on Poisson-disk sampling and geometric computing
on GPUs. Section 3 presents the details of PixelPie. Section 4 dis-
cusses the quality of our results. Section 5 presents the performance
and memory requirements of PixelPie.

2 Related Work

2.1 Poisson-Disk Sampling

Poisson-disk sampling has been an active area of research in com-
puter graphics since the 1980s. Yellott [1982] showed that the dis-
tribution of photo receptors in the human eyes follows a Poisson-
disk distribution. Dippe and Wold [1985] introduced this distribu-
tion in the stochastic sampling patterns to address aliasing artifacts.
Cook [1986] showed that Poisson-disk sampling can be applied to
a variety of computer graphics applications such as ray tracing and
generating motion blur. Cook was also the first to show how to
generate a bias-free Poisson-disk distribution by the dart-throwing
method. Lagae and Dutre [2008] provide a nice survey of Poisson-
disk sampling.

Several approximation schemes for Poisson-disk sampling have
been proposed. Cook [1986] approximated the Poisson-disk sam-
pling by jittering a grid of samples. Wang tiles [Lagae and Dutré
2005; Lagae and Dutré 2006a; Kopf et al. 2006] and polyomi-
noes [Ostromoukhov 2007] are popular approximations but they
introduce bias. The most recent schemes include replicating a sam-
ple spectrum [Kalantari and Sen 2012] and solving a constrained
farthest-point optimization problem [Balzer et al. 2009; Chen and
Gotsman 2012; de Goes et al. 2012].

Spatial data structures have been used to accelerate dart throwing
by helping identify sparse regions. McCool and Fiume [1992]
throw darts from large to small to cover the domain and then
apply the Lloyd relaxation procedure to move the darts to the
Voronoi cell centers. Jones [2006; 2011] used Voronoi diagrams
and grids to select sparse regions for dart throwing. Dunbar and
Humphreys [2006] used a new spatial data structure bounded by
circular arcs, the scalloped sector data structure, to assist in throw-
ing darts. White et al. [2007] used a quadtree to throw darts into
empty regions only. Gamito and Maddock [2009] generalize the use
of subdivision-assisted dart throwing to produce maximal samples
in higher dimensions.

Recent work has introduced parallel dart throwing on GPUs.
Wei [2008] introduced the first multi-resolution approach, however,
it does not guarantee maximal and bias-free Poisson-disk samples.
Ebeida et al. [2011; 2012] have shown maximal and bias-free sam-
pling with CUDA by first sampling on a coarse grid then filling in
the empty regions.

Poisson-disk distribution have been generalized to higher-
dimensions [Gamito and Maddock 2009; Ebeida et al. 2012; Lagae
and Dutré 2006b; Wei 2008]. Applications of high-dimensional
Poisson-disk distributions include procedural texture and volumet-
ric mesh generation for simulations. Poisson-disk sampling on
mesh surfaces is used for remeshing, texturing, and object place-



ment. Cline et al. [2009] threw darts directly onto a mesh surface.
Bowers et al. [2010] and Xiang et al. [2011] sampled a mesh sur-
face on the GPU in parallel. Li et al. [2010] showed anisotropic
sampling on a surface according a vector field.

Poisson-disk sampling has been extended to handle importance
sampling. Ostromoukhov et al. [2004; 2007] used a hierarchy of
tiles to perform importance sampling. Kopf et al. [2006] showed
a real-time implementation with recursive Wang tiles. Wei [2010]
presented a dart throwing approach for importance sampling on the
GPUs. Kalantari and Sen [2011] threw darts as discretized disks of
different radii. Fattal [2011] sampled according to different Gaus-
sian kernels. The constrained farthest-point approaches [Balzer
et al. 2009; Chen et al. 2012; de Goes et al. 2012] can also perform
importance sampling. Zhou et al. [2012] showed how to sample
according to different spectra.

In this paper we present a maximal and parallel dart-throwing ap-
proach that leverages the highly optimized graphics pipeline on the
modern GPUs. We also present a simple extension to our approach
that can handle importance sampling using the graphics pipeline.

2.2 General-Purpose GPU Computing

In the past decade a number of approaches have successfully
leveraged the computing power of GPUs to solve general prob-
lems [Owens et al. 2007]. In addition to computer graphics prob-
lems, such as global illumination [Hachisuka 2005] and ray trac-
ing [Parker et al. 2010], there have been notable successes in other,
more traditional computation areas, such as geometric computing,
signal processing, and physics-based simulation. Work on general-
purpose GPU computing now spans the fields of scientific and
high-performance computing. Much of this work is implemented
on NVIDIA’s CUDA platform [Nickolls et al. 2008] and various
CUDA libraries, such as Thrust [Bell and Hoberock 2011], which
implements basic parallel programming operations, such as map,
reduce, scan, sort, and compact.

While most recent work in GPU computing simply treats the GPU
as a massively-parallel processor, there is a long history of com-
puting Voronoi diagrams and distance transforms with graphics
pipelines. Hoff et al. [1999] used the fixed graphics pipeline to
compute discrete Voronoi diagrams. Sigg et al. [2003] evaluated
distance in the fragment shader and Sud et al. [2004] used the oc-
clusion queries to cull out irrelevant primitives when computing
distance fields. Fischer and Gotsman [2006] showed how to use
the GPU screen-space tangent plane algorithm for computing high-
order Voronoi diagrams. Rong et al. [2006; 2011] introduced a
jump flooding approach that flood fills a texture in parallel. It can
be use to compute distance transforms, Voronoi diagrams, and cen-
troidal Voronoi tessellation.

3 PixelPie: Approximate Poisson-disk Sam-
pling by Rasterization and Occlusion
Culling

We use the dart-throwing method [Cook 1986] to generate a max-
imal Poisson-disk distribution. Each dart is rasterized as a disk of
radius 7 in the graphics pipeline. If the distance between two disk
centers is less than r, one disk will occlude the center of the other
disk. We remove one of the occluded disks to resolve this minimum
distance violation. The graphics pipeline approximates the circular
disks by discrete pixels for efficient processing.

We have implemented this approach using the OpenGL GLSL
shaders and the CUDA Thrust Library. We rasterize darts as solid
disks on two 2D textures as target domains and keep a list of empty
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Figure 3: PixelPie Pipeline overview: We use programmable
shaders to perform Poisson-disk sampling. The vertex shader
passes the random darts to the geometry shader. The geometry
shader emits triangles for the darts and the fragment shader trims
the triangles into disks. In Step 1: Dart-Throwing, we render disks
for all the darts into the output depth map. In Step 2: Conflict-
Removal, we read the depth map from step 1 to identify the accept-
able unoccluded darts and render them into the coverage map. This
two-step process iterates until we obtain a maximal Poisson-disk
distribution.

pixels. The first texture is a depth map for recording occluded darts.
The second texture is a coverage map for tracking empty regions.
We illustrate the PixelPie implementation in Figure 3. The vertex
shader passes the input dart to the geometry shader without any
modification. We discuss the geometry and fragment shaders in de-
tail.

3.1 Dart Throwing

Input and Pre-processing The goal of this step is to generate a
set of random samples in the empty regions. For this we maintain
a list of pixels that are empty (not covered by a previously thrown
dart). We use a CUDA kernel to generate a random number and use
it to select a pixel position from the empty-pixel list. We use the
default minstd random number generator provided by the CUDA
Thrust library'. We dispatch this CUDA kernel in parallel. Each
2D dart position contains two 16-bit floating-point numbers (z, y).
Each 2D position is packed into a 32-bit unsigned integer for data
transfer. We initialize the coverage texture map to zero once at the

'We have also experimented with the Mersenne Twister random number
generator [Saito and Matsumoto 2006] but we have not observed significant
quality difference in the results.



beginning of the entire algorithm and reset the depth map texture to
the maximum depth at the start of every iteration.

Geometry Shader The geometry shader emits one equilateral
triangle per dart whose incircle has a radius r as in Equa-
tion 2. For each dart, we compute its 3D position by un-
packing its 2D (x,y) coordinate from the unsigned integer dart
data with unpackUnorm2x16 and we assign the dart’s unique
gl PrimitiveIDIn as its depth z. In addition to the triangle
vertices, the geometry shader also emits normalized triangle coor-
dinates for disk trimming by the fragment shader. The normalized
coordinates are relative to a disk whose center is at (0, 0) and radius
r = 1. The rasterizer converts each dart triangle into fragments and
interpolates the normalized coordinates across each fragment.

Fragment Shader The fragment shader is used to trim dart tri-
angles into pixel-precise disks. This is done by simply discarding
those fragments whose normalized coordinates have a magnitude
greater than 1. Such fragments lie outside the incircle of the tri-
angle representing the dart. At the end of this step, the fragment
shader renders the disks into the depth map for proper occlusions.

We have also experimented with other rendering primitives, namely
quads, point sprites, and smooth points. We have not observed a
significant difference in the performance. Rendering disks from
quads may increase performance as it discards fewer pixels than
rendering disks from triangles, yet we suspect the overhead of ad-
ditional geometry processing for multiple triangles offsets this ben-
efit. The sizes of point sprites and smooth points are constrained to
a small range and this limits their use in importance sampling.

Depth Test and Occlusions We enable depth testing to ensure
that the disks properly occlude one another and optimize this ap-
proach’s performance. Fragments of the disks that are rasterized
early are likely to have lower primitive IDs and depth values. By
using the “less-than” depth function, the GPU can efficiently reject
the later occluded fragments. This is similar to rendering in an as-
cending depth order. We would like to point out that the GPU can
perform early depth culling before invoking the fragment shader as
the shader does not modify the depth.

3.2 Conflict Removal

Note that we had encoded the dart’s wunique ID
gl PrimitiveIDIn as its depth z. This was because we
would like to reconstruct the IDs of the darts that survive the
occlusion test by reading back the depth buffer and removing
duplicates. However, this step needs to be carried out carefully.
At the end of the the Dart Throwing step it is possible that some
of the dart centers are occluded while their fragments survive the
depth occlusion from neighboring darts. We are only interested in
identifying the darts whose centers survive the occlusion check as
representing a partial set of the final Poisson-disk distribution. To
accomplish this efficiently we carry out the Conflict Removal step
of each iteration after the Dart Throwing step.

Input and Pre-processing The output depth map of the Dart
Throwing step is used as the input depth map for this step. We
re-throw the same batch of darts as in the Dart Throwing step to
identify those darts whose centers remain unoccluded.

Geometry Shader For each dart with coordinates (z,y, z), the
geometry shader reads the depth d,, at location (x,y) from the
depth map. If the depth d, is closer than the dart’s depth z, it
means that the center of this dart is occluded by another dart. Such
occluded darts violate the minimum distance requirement and are

discarded by this shader. If the depth d., is equal to the dart’s
depth z, it means that the center of this dart is not occluded. In that
case the geometry shader emits a triangle and records the dart’s 2D
position (z,y) into the results buffer by using the OpenGL trans-
form feedback mechanism. The 2D positions of such unoccluded
darts comprise a part of the final Poisson-disk distribution.

Fragment Shader Similar to the Dart Throwing step we use the
fragment shader to trim dart triangles into pixel-precise disks. In
this step however we do not have to do any depth testing and we
render the disks on the coverage map.

3.3 Post-processing

The goal of this post-processing step is to use the binary coverage
map to remove the newly-covered pixels from the empty pixel list.
An elegant way to accomplish this is to use the parallel stream-
compaction from the CUDA Thrust library. Stream compaction
takes an input vector v and a predicate P, and outputs those com-
ponents of v for which P (v) is true [Horn 2005; Harris et al. 2007].
Stream compaction consists of a scan and a scatter operation. In our
case the empty-pixel list is the input vector and the binary coverage
map represents the predicate. The scan stage involves generating a
temporary vector that represents the coverage for every entry in the
empty-pixel list. The scan of this temporary vector generates the
destination address for every uncovered pixel in the output vector.
The scatter stage then copies the uncovered pixels using the destina-
tion addresses from the previous stage into the output empty-pixel
list. Modern GPUs have a native scatter capability that makes this
stream compaction very efficient [Harris et al. 2007].

We iteratively fill the remaining empty pixels until there are no
empty pixels left. The results buffer contains a maximal Poisson-
disk distribution. In subsequent iterations, we decrease the number
of darts to match the number of remaining pixels. We would like to
use the GPU by throwing a large number of darts in parallel, how-
ever, rejecting darts after filling up the domain is a waste of com-
puting power. We will show how to empirically find a reasonable
number of darts in Section 5.

Optimizations for an Empty Domain We substitute expensive
memory accesses with cheap computation when the domain is
empty during the first iteration in two ways. First, we generate
the dart positions by directly converting 32-bit random numbers to
the 2D coordinates. Second, in the post-processing step for the first
iteration, we initialize the empty-pixel list by simply enumerating
all the pixels locations instead of iterating memory lookups over an
empty coverage map. This optimization is significant because the
initial empty-pixel list is also the largest one.

Summary Figure 4 shows an example of the entire sampling pro-
cedure. Figure 4(a) shows the depth map after the dart-throwing
step. Figure 4(b) shows the coverage map after the conflict-removal
step. Figure 4(c) shows the remaining empty regions. Figure 4(d-f)
show new darts are thrown at the empty regions in the subsequent
iterations. This example terminates after four iterations.

3.4 Importance Sampling

PixelPie is versatile enough to readily extend to importance sam-
pling. We vary the sampling densities by emitting disks of different
radii; the constant r in Equation 2 is replaced by a radius func-
tion r(2) as shown by the importance map in grayscale in Figure 5.
We represent high importance by low (darker) intensities and small
disks. Similarly, we represent low importance by high (lighter) in-
tensities and large disks. The geometry shader reads the importance
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Figure 4: Example: The first iteration: (a) shows the depth map of
darts after the dart-throwing step. The intensity of the darts reflects
their ID and depth. (b) shows the coverage map of non-conflicting
darts. (c) shows the remaining empty regions. The subsequent iter-
ations: (d), (e), and (f) show darts are thrown only into the empty
regions during the second, third, and forth iterations. The entire
domain is covered in four iterations.

Figure 5: Importance sampling: We throw darts of different sizes to
vary the sampling densities according to an importance map. This
figure corresponds to Figure 2(a), (c), and (e) in an importance
sampling setup.

texture and scales the disk radii accordingly. The changes in the ge-
ometry shader are presented in Figure 6.

The above process works well within regions of similar importance
but additional care needs to be taken when dealing with boundaries
between regions with significantly different importance. Here we
follow the approach by Mitchell et al. [2012] that works well in an
iterative setting. A sample j satisfies the empty disk property if

Vie X,i#j:|li—jll = f(5) “)

Here f(i,7) is a function of r(-) evaluated at a previously accepted
sample ¢ and a later candidate sample j. A candidate j is accepted
if ||s — j|| > f(4, ), Vi € X so far. Given that the sample ¢ arrives
before sample j, the importance function f(z, ) may operate in the
following ways [Mitchell et al. 2012]:

f(i,7) =r(@) Prior Disk 5)
f@,5) =) Current Disk 6)
f(i,5) = max(r(i), 7(j)) Bigger Disk  (7)

f(i,5) = min(r(i), (7))

We can implement each of these cases by using the depth-test func-
tions and by encoding the importance into the depth. Since the
Current Disks have a greater depth than the Prior Disks, we use the

Smaller Disk ®)

Emits triangles
of varlous sizes
[ ]
ce Map

B A

Figure 6: Geometry shader for importance sampling: It emits tri-
angles of different sizes according to the importance map.

“greater-than” depth test function to ensure that the Current Disks
occlude and reject the Prior Disks regardless of importance. Sim-
ilarly, we use the “less-than” depth test function to favor the Prior
Disks. For the other two cases, we can encode the disk radii into
the most significant bits of the depth to select either the Bigger or
the Smaller Disks. This ensures the depth of the Smaller Disks are
less than the Bigger Disks. Once again, by using the “greater-than”
or “less-than” depth tests, we can consistently pick the Bigger or
Smaller disks.

4 Quality Analysis

In this section, we show our sampling approach produces high-
quality Poisson-disk samples.

4.1 Sampling Correctness

Non-conflicting Samples from the Same Iteration In the dart-
throwing step, if any distance between two samples is less than
r, one of the disks must occlude the other sample. The conflict-
removal step discards the occluded sample and removes this con-
flict. By encoding each dart with a unique depth and using orthogo-
nal projection for rendering, we ensure that the occlusions are well-
defined and the rasterized disks are free of Z-fighting.

Non-conflicting Samples from Different Iterations The cover-
age map covers pixels that are r away from the accepted samples.
Since we only throw darts on to the uncovered pixels in subsequent
iterations, the distance of a new sample and any previously accepted
sample must be at least .

Convergence to Maximal Sampling Our iterative sampling ap-
proach converges to a maximal sample set by monotonically reduc-
ing the empty pixel count after each iteration. The sample with the
smallest depth must be accepted as it cannot be occluded by any
other sample. Also, any accepted sample must cover at least one
previously empty pixel. This ensures the number of empty pixels
reduces monotonically.

4.2 Spectral Analysis

Figure 7 shows spectral analysis of our sample point sets. Each
point set consists of 10K samples at different texture resolutions.
We used the pointset analysis tool [Schlomer and Deussen 2011] to
compute this spectral analysis. We estimate the required radius, 7

following Gamito and Maddock [2009]: » = 0.7766, / \FN’ where
N is the desired number of samples. For N = 10k,  ~ 0.0083.

Spectral analysis shows that samples generated by our method are
comparable to Gamito and Maddock’s accurate approach [2009].
The power spectrum periodograms are smooth at high resolutions
of 40962 and 20482. Further, the anisotropy plots show that our
spectra are radially symmetric. However, the quality of the samples
deteriorates at low resolution 1024 where the power spectrum pe-
riodogram shows a biased pattern.
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Figure 7: The figures above compare the quality of 10K Poisson-disk distribution samples at various target texture resolutions. From top
to bottom, the rows show the generated samples, the power spectrum periodogram, the radially averaged power spectrum, and the radial
anisotropy plot. Our results on high resolution textures are comparable to Gamito and Maddock [2009]’s accurate approach in (a). However,
the power spectrum periodogram of low resolution samples at 1024 shows a biased pattern in (d).

4.3 Dart Samples at Subpixel Locations

Discretization can be a source of bias if the texture resolution is
too low. We examine the 1024 samples from Figure 7(d). The
radius of such samples is 0.0083 x 1024 = 8.5 pixels per disk. We
examine such a discretized disk in Figure 8(a). The center of this
disk is at the center of a pixel and its shape is closer to an octagon
than a circular disk. The polygonal shape affects the distribution of
samples resulting in aliasing artifacts.

We reduce aliasing by creating multiple variations of discretized
disks based on the sub-pixel location of their centers. Figure 8(b)
shows the 4 different shapes of disks created by 2 x 2 subpixel
centers. We show the average subpixel-centered disks of 2 x 2
and 4 x 4 in Figure 8(c). The average subpixel-centered disks are
visually close to a circular anti-aliased disk and provide a better
probabilistic coverage of the boundaries over all such disks.

We use the high precision of our (x,y) dart coordinates to center
them with subpixel accuracy. The 16-bit precision of our (x,y)
dart coordinates is often higher than the (z,y) resolutions of our
textures. For example, the integer pixel coordinates for a 81927
texture only require 13 bits and we can use the remaining 3 bits for
subpixel accuracy.

Angular Distribution of Nearest Neighbors We show that the
subpixel-centered samples substantially reduce the discretization
bias by evaluating the angle distribution of neighboring samples.
The angles among nearest-neighbor samples should ideally be uni-

formly distributed in a Poisson-disk distribution. However, the dis-
crete polygons create an uneven distribution of neighbors. We com-
pute the angular statistics among the neighboring samples to quan-
tify this bias. We first construct a Delaunay triangulation of the
samples to find the nearest neighbors. Then we compute the an-
gles between the neighboring samples and the x-axis. We plot the
resulting distribution of angles in a 360-bin histogram as shown in
Figure 9. In Figure 9(a), the pixel-centered samples produce a lot
of spikes. This is because an axis-aligned octagonal shape of the
dart reduces sample neighbors at multiples of 45°. In comparison,
the angle distribution of the subpixel-centered samples is more uni-
form. Their angle distribution is comparable to the distribution pro-
duced by Gamito and Maddock’s [2009] approach in Figure 9(b).
Since one can expect the angles to be evenly distributed around the
mean frequency, we can quantify the angular bias by computing
the standard deviation of the angular distribution. The standard de-
viations of the pixel-centered samples, the subpixel-centered sam-
ples, and the Gamito and Maddock [2009] samples are 73.2, 16.7,
and 16.5 respectively. The subpixel-centered samples have substan-
tially reduced the angular bias of the distribution.

We show the spectral analysis of 10K samples with subpixel cen-
ters in Figure 10. In contrast with Figure 7(d), there is no visibly
biased pattern in the power spectrum periodogram in Figure 10(a).

5 Performance

In this section, we evaluate the performance of PixelPie. PixelPie
can generate high-quality Poisson-disk distribution at a rate of 6.8
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Figure 8: Comparison of pixel-centered and subpixel-centered
disks: (a) shows the shape of a discretized pixel-centered disk, (b)
shows variations of disks centered at 2 x 2 subpixel locations, and
(c) shows the average of the subpixel-centered disks at 2 X 2 and
4 X 4 subpixel locations. The average of subpixel sampling effec-
tively generates anti-aliased disks.
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Figure 9: Angular distributions: The angles between neighboring
samples should be evenly distributed in a Poisson-disk distribution.
We plot this angular distribution with 360-bin histograms in which
the x axis shows the angle between the neighboring samples and
the y axis shows the frequency. We plot our distributions in red and
the Gamito and Maddock [2009] distributions in blue. (a) shows
the bias of the pixel-centered samples results in several spikes with
a standard deviation of 73.2. Subpixel-centered samples substan-
tially reduce this bias in (b) to 16.7 that compares favorably to the
Gamito and Maddock’s [2009] standard deviation of 16.5.

million samples per second. We have implemented PixelPie on
the Windows 7 OpenGL platform with Visual C++ and NVIDIA
CUDA Thrust. We ran our experiments on a NVIDIA GeForce
GTX 580 GPU and an Intel Core i7 2.8 GHz CPU.

5.1 Dart Batch Size

The GPU usage is maximized when processing large batches of
darts, yet rejecting darts after filling up the domain wastes com-
putation power. We have performed experiments to estimate the
optimal batch size. Similar to the quality assessment section, we
generate N = 10K samples by throwing darts in different batch
sizes on to textures of various resolutions. We throw batches of
N/8 to 2N (1.25K to 20K) darts. In Figure 11, we plot the run-
ning time against different batch sizes. As can be seen, the running
time drops rapidly as the batch size increases from 1.25K to 6 K
darts and rises slowly thereafter as the batch size further increases
to 20K darts. This behavior is consistent across textures of differ-
ent resolutions. This study shows that a batch size of roughly N/2
is the most efficient.

5.2 Performance Characteristics

The performance of PixelPie is depended on the resolution of the
target texture. We plot its running time against different sample
sizes in Figure 12. The sample sizes N range from 0.1% to 1% of
the target texture size. The texture size instead of the sample size
determines the performance because the GPU has to render every
pixel of the target texture.

In Figure 13 and Table 1, we summarize the performance of Pix-
elPie. We throw darts of a small absolute radius (8.5 pixels) with
the optimal batch size N/2 on textures of different sizes to obtain
samples of different sizes. We plot the running time of PixelPie
against the number of samples generated in Figure 13. Table 1 de-

(b)

power
anisotropy

T £ ED 720 T D ED )
frequency frequency

(© (d)

Figure 10: 1024 subpixel-centered samples: Subpixel-centered
samples reduce the discretization bias. In comparison with Fig-
ure 7(d), biased patterns are not visible on this power spectrum
periodogram.
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Figure 11: Batch size: We throw darts to sample a Poisson-disk
distribution with N = 10K samples in batches of different sizes.
The batch sizes range from N = 1.25K to 2N = 20K. Each line
represents a target texture of a different resolution. The running
time drops rapidly from 1.25K to 6 K darts and slowly rises further.
A batch size around N /2 is consistently efficient.

tails the texture size, batch size, sample sizes, relative dart radius,
timings and memory usage. We present the timings in three parts:
(1) Dart-throwing step (S1), (2) Conflict-removal step (S2) , and (3)
the post-processing stream compaction (PP).

Figure 14 shows PixelPie’s sampling performance with darts of dif-
ferent radii. The performance increases rapidly when the radius de-
creases, therefore it is important to identify the minimum required
radius for the optimal performance.

Comparison We present a comparison of PixelPie and the re-
cent dart-throwing maximal Poisson-disk sampling approaches in
Table 2. Gamito and Maddock’s test program [2009] can produce
1M samples at a rate of 22K /s on our platform. We ran PixelPie
on a GeForce GTX 460 GPU to compare against the performance
reported in [Ebeida et al. 2011; Ebeida et al. 2012]. We note that
their precision is dependent on the resolution of the flat quadtree.
PixelPie can produce 800K samples at a rate of 4M /s, which is
four times faster than the previously reported performance.



Samples Parameters Memory Performance Timing (ms) Rate
N Domain Batch# Radiusr (MB) Iter. S1 S2 PP Total | (sample/s)

9.81K 10242 5.05K  8.30E-03 8.09 8 4.71 3.25 8.37 16.34 0.60M
39.05K 20482 20.21K  4.15E-03 3245 9 6.11 3.53  10.56 20.20 1.93M
87.77K 30722 4548K  2.77E-03 72.43 9 8.92 4.57 1343 26.92 3.26M
155.96K 40962 80.86K  2.08E-03 128.75 10 12,97 6.27 17.08 36.33 4.29M
243.28K 51202 126.34K  1.66E-03 200.88 10 18.44 7.87 2153 47.83 5.09M
350.17K 61442 181.93K  1.38E-03 289.13 10 24.73 9.81 26.26 60.80 5.76M
476.03K 7168%  247.62K  1.19E-03 393.38 11 3333 1247 3372 79.52 5.99M
624.35K 81922  323.43K  1.04E-03 513.63 11 4290 15.71 39.87 98.48 6.34M
787.27K 92162  409.34K  9.22E-04 650.00 11 5285 18.02 47.12 117.99 6.6TM
973.22K | 10240%> 505.35K  8.30E-04 802.38 11 6488 2147 5555 14191 6.86M

Table 1: This table summarizes the parameters, performance, and memory consumption of our experiments presented in Figure 13. Radius
r denotes the relative radius in the (0,1) domain. Timing section includes number of iterations to convergence, the cumulative timings of
dart-throwing step (S1), conflict-removal step (S2), and stream-compaction (PP), and the total time.
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Figure 12: Sample size: The performance of PixelPie is mainly
dependent on the resolution of the target textures. The running time
is essentially the GPU time for rendering all the pixels. The change
of the sample size affects the quality of the samples rather than the
running time.
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Figure 13: Performance: We throw darts with an absolute radius
of 8.5 pixels and a batch size of N/2 to textures of various sizes to
obtain high quality Poisson-disk distributions.

5.3 Memory Consumption

Table 1 shows our GPU memory usage and Table 2 shows a com-
parison of PixelPie and the other state-of-the-art dart throwing ap-
proaches. Our memory usage is mainly determined by the size of
the target textures. The profiled memory consumption in Figure 1
shows PixelPie requires approximately 8 bytes per pixel. The target
textures and the empty pixel-list use about 7 bytes per pixel. We use
32-bit pixels (4 bytes) for the depth map and unsigned char pixels
(1 byte) for the coverage map. We reserve an empty-pixel list (2
bytes) that is half the size of the domain with 32-bit elements. Ad-
ditional memory resources required include the random dart source
buffer, the results buffer, and any extra memory used by the CUDA
Thrust operations. PixelPie does not require a significant amount of
CPU main memory.

Performance (M points/second)

L 7 J
' ++"+"+J‘F/)+
e st R .

55 50 45 40 35 30 25 20 15 10 5
Radius (pixels)

Figure 14: Radii: We throw darts of various absolute radii to gen-
erate Poisson-disk distributions on 10K x 10K textures. This plot
shows the sampling performance (y-axis) increases as the absolute

radius decreases (x-axis).

Method Type Samples Rate
[Gamito and Maddock 2009] CPU  1M/0.5GB 22K/s
[Ebeida et al. 2011] (GTX460) GPU 2M/1 GB 224K/s
[Ebeida et al. 2012] (GTx460) GPU  0.6M/1GB 1M/s
PixelPie (GTX460) GPU 0.78M/0.65GB  4M/s
PixelPie (GTX580) GPU 0.97M/0.8GB 6.9M/s

Table 2: Performance comparison: PixelPie is four times faster
than the state-of-the-art CPU and GPU dart throwing approaches
with comparable memory usage.

5.4 Importance Sampling

We show the results of importance sampling in Figure 15. Fig-
ure 15 (a) shows the importance sampling of a quadratic gradient
by PixelPie. Figure 15 (b-g) show a comparison of PixelPie against
Kalantari and Sen [2011]’s serial and discrete dart throwing ap-
proach. Each example contains approximately 20K points. While
both approaches produce samples of similar quality, our GPU par-
allel PixelPie approach runs 400 times faster than Kalantari and
Sen [2011]’s serial approach on a CPU. PixelPie samples were
generated on a GTX 580 with 20482 textures. Their results were
generated on a Core 17 2.8 GHz CPU [Kalantari and Sen 2011].
We select the Smaller Disk option at the boundaries between dif-
ferent importance regions. The importance maps are provided by
Kopf et al. [2006].

6 Limitations

One limitation of PixelPie is the bias introduced by the discretiza-
tion. While this is a limitation, we have shown that the angular
distribution of our subpixel-centered samples is comparable to the
samples produced by the Gamito and Maddock’s [2009] exact ap-
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Figure 15: Importance Sampling: (a) shows PixelPie sampling on a quadratic gradient. (b-g) show a comparison of PixelPie against
Kalantari and Sen [2011]’s discrete approach. (b) and (e) show the importance maps. (c) and (f) show PixelPie results. (d) and (g) show
their results. Both approaches produce samples of similar quality while our parallel GPU PixelPie approach runs 400 times faster than their

serial CPU approach. PixelPie was tested on a GTX 580 GPU. Their approach was tested on a Core i7 2.8GHz CPU [Kalantari and Sen

2011].

proach. A second limitation of PixelPie is that the precision of Pix-
elPie is constrained by the resolution of the target texture. However
the use of discrete textures allows us to use rasterization and depth-
test hardware to achieve very high sampling performance. PixelPie
trades precision with performance gain. We believe this approach is
particularly suitable for screen-space interactive computer graphics
applications, since the need for precision depends on the resolution
of the discrete framebuffer.

7 Conclusions

In this paper, we have shown how to use the programmable graph-
ics pipeline to generate 2D maximal Poisson-disk distributions. The
key to our approach, PixelPie, is to identify and remove conflicting
darts by culling occluded disks. Our implementation leverages the
optimized graphics functions of the modern GPU to perform par-
allel dart-throwing and conflict-removal in large batches. PixelPie
can be extended to perform importance sampling by programming
the geometry shader to emit disks of different radii. We have also
presented angular distribution of nearest neighbors to quantify the
bias of Poisson-disk distributions. We have introduced subpixel-
centered samples to substantially reduce this bias for discrete sam-
pling approaches. Our experiments have shown that PixelPie can
produce maximal Poisson-disk samples at the rate of nearly 7 mil-
lion samples per second on a GeForce GTX 580. The surprising
insight of our work is that hardware-oriented solutions can signif-
icantly outperform the computational geometric state-of-the-art al-
gorithms for Poisson-disk sampling by a factor of 4 or more with
no perceptible difference in quality. Our approach indicates that
modern geometry and tessellation shaders have the potential to sig-
nificantly accelerate proximity-driven geometry computations.
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