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Abstract

Contemporary molecular dynamics simulations result in a glut of
simulation data, making analysis and discovery a difficult and bur-
densome task. We present MDMap, a system designed to summa-
rize long-running molecular dynamics (MD) simulations. We rep-
resent a molecular dynamics simulation as a state transition graph
over a set of intermediate (stable and semi-stable) states. The tran-
sitions amongst the states together with their frequencies represent
the flow of a biomolecule through the trajectory space. MDMap au-
tomatically determines potential intermediate conformations and
the transitions amongst them by analyzing the conformational space
explored by the MD simulation. MDMap is an automated system
to visualize MD simulations as state-transition diagrams, and can
replace the current tedious manual layouts of biomolecular folding
landscapes with an automated tool. The layout of the representative
states and the corresponding transitions among them is presented to
the user as a visual synopsis of the long-running MD simulation.
We compare and contrast multiple presentations of the state transi-
tion diagrams, such as conformational embedding, and spectral, hi-
erarchical, and force-directed graph layouts. We believe this system
could provide a road-map for the visualization of other stochastic
time-varying simulations in a variety of different domains.

Keywords: Molecular dynamics, Protein folding, Time varying
visualization, Graph layout, Bioinformatics, Clustering.

1 Introduction

The question of how biomolecules fold into their active structural
state is one of the greatest unsolved problems in biology [2, 23].
Given that these processes are complex, computational simulations
of biomolecules are critical for understanding the underlying prin-
ciples determining their behavior. Such molecular dynamics (MD)
simulations have become indispensable tools in biophysics and ma-
terial science. However these simulations are often very long with
tens of thousands to millions of time steps and the visual tools that
help scientists comprehend MD simulations are still rudimentary.
Although at first it may appear that visualizing time-varying sim-
ulations as they occur should be effective at conveying and under-
standing change over time, recent research presents evidence to the
contrary. Tversky et al. [43] have shown that animations may in
fact be less suited than static images for conveying physical phe-
nomena that are too complex or too fast to be properly understood.
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Biomolecular dynamics simulations are fairly complex with multi-
ple moving components and have intra-molecular interactions and
motions that occur over different time scales. Previous approaches
for summarization of time-varying MD simulations have largely fo-
cused on one-dimensional temporal summarization by extraction of
a small number of salient frames. In this work we present a differ-
ent, 2D-layout-based approach for summarization of MD simula-
tions that is inspired by the leading theories in the field of biomolec-
ular folding.

It is now well established that biomolecules navigate a com-
plex folding landscape in search of the folded structure. In this
view, there exist a myriad of different unfolded structures from
which biomolecules can start folding towards a native basin of at-
traction that is characterized by a well-defined conformation that
corresponds to the folded structure [41, 47]. As such, for a sin-
gle biomolecule, there exist many possible sets of parallel folding
pathways for progressing from one of the many possible unfolded
structures to the folded structure. These pathways can consist of
multiple long-lived and highly populated intermediate states that a
biomolecule may visit [7, 42].

In this paper we present a system, MDMap to visualize a molec-
ular dynamics trajectory by representing it as a set of paths through
a state transition graph. In this approach, the set of intermediate
conformations of the biomolecule in the folding process become
the states, the transitions amongst the states together with their fre-
quencies represent the flow of a biomolecule through the trajectory
space, and an automatic 2D layout represents a novel visualization
of the MD simulation of the folding process. MDMap involves:

1. Determination of conformational states: We present an algo-
rithm based on hierarchical agglomerative clustering, which identi-
fies conformational states based on a matrix of root mean squared
distances (RMSDs) between the molecular structures in a trajec-
tory. This approach results in a cluster hierarchy, which also en-
ables multi-level exploration of conformational states.

2. Discovery of the state transition graph: By observing how the
identified states change over the course of a simulation, we infer the
edges of the state transition graph. How often a particular transition
occurs determines the thickness of the transition edge. Simple de-
tail elision algorithms facilitate interactive discovery of the most
frequent state transitions in the trajectory space of molecules while
minimizing visual clutter.

3. Automatic Layout of the state transition graph: We present
2D layouts of the state transition graph discovered by our system,
including conformational embedding, spectral, hierarchical, and
force-directed layouts. We discuss the strengths and weaknesses
of each layout for our target application.

We make use of several existing graph layouts. However, the
novelty of our method resides in the representation and visualiza-
tion of molecular dynamics trajectories as state-transition graphs;
this has not been explored in the existing visualization literature.



2 Background and Related Work

Description of self-organization principles in biology require a de-
tailed understanding of how biomolecules arrange themselves into
well-defined structures and interact with others. Among the most
commonly studied biomolecules using MD simulations are pro-
teins and RNA, due to their importance in virtually all cellular pro-
cesses. Every organism depends on the ability of proteins and RNA
molecules to undergo structural changes (i.e., fold) into specific, ac-
tive structures that correspond to a host of critical biological func-
tions in the cell including catalysis, regulation, and ligand binding.

Protein Folding Analysis Noe and Fisher [33] used hierarchal
transition network to classify and visualize metastable states of pep-
tides. Diego et al. [36] maps MD trajectories into a Conforma-
tional Markov Network based on the potential energy which al-
lowed them to explore Free Energy Landscape. In our work, we
use conformational distance to perform agglomerative clustering
and provide an efficient visualization tool. We use multi-level hi-
erarchal network which provides both higher level overview of the
stable states and the detailed view within each stable states. In an in-
dependent development to our work, Voelz e al. [45] have very re-
cently applied data mining methodology to simulation data to study
the folding pathway of the protein NTL9(1-39). Though the com-
putational mechanisms employed by Voelz et al. are different, this
work is similar in spirit to the approach taken by Guo and Thiru-
malai [14] and Klimov and Thirumalai [20], in which the authors
apply a neural net algorithm to cluster the structures in a trajectory
such that a distance metric would classify similar structures into
a predetermined number of states. While their work focuses pri-
marily on the determination of intermediate states, our work also
stresses the visualization and layout of the state transition graph
arising from molecular dynamics trajectories.

Biomolecular Visualization Visualization has played a vital
role in helping understand the relationship between structure and
function of biomolecules such as proteins, as well as in giving us
important insights into the folding process itself. Generation and vi-
sualization of molecular surfaces is one such area [4, 8, 22, 38, 44].
Potzsch et al. [35] have presented a system for visualization of
lattice-based protein-folding simulations by employing multiple
views, focus+context, and table lenses in a very effective manner.
Tools such as VMD [16] have greatly assisted by crafting new vi-
sualization solutions as well as dissemination of proven ones.

From 1D Summarization to 2D Layouts One of the natural
avenues for enhancing the descriptive power of summarization is
moving from a 1D to a 2D layout. For instance, in computational
genomics, early efforts such as Artemis [37] and VISTA [27] fo-
cused on displaying the genomic data in a one-dimensional layout.
In two-dimensional layouts, Nielsen ef al. [31] present their system
ABYySS-Explorer to show the global assembly structure by laying
out short DNA sub-sequences as a graph. Meyer et al. [29] vi-
sualize multiple genomes for comparison in a circular layout with
MizBee. Barsky et al. [5] apply the interaction graph model to
visualize molecular immunology data.

Temporal Summarization Girgensohn and Boreczky [13]
summarize long video sequences by hierarchical clustering. They
provide interactive visualization of these temporally-constrained
key frames. Assa et al. [3] extracts important poses from skele-
tal animations by embedding the high dimensional animation pa-
rameters into a curve in low dimensional space. The extrema of
the curve represents the extreme poses. Lu and Shen [25] present
an efficient way to visualize large time-varying datasets using the
metaphor of an interactive storyboard. Our work is different in its
scope from previous work, as we attempt to rediscover and lay out
the state transition graph of a MD simulation.
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Figure 1: The MDMap system discovers the state transition graph
for molecular dynamics (MD) simulations to produce visual layouts
highlighting different aspects of the simulation.

Motion Depiction We aim to depict molecular motions to bet-
ter our understanding in protein folding. Recent research in cogni-
tive psychology [43] suggests that static visualizations are more ef-
fective at conveying information than animations. Rapid and com-
plex interactions of different moving components of a molecule un-
dergoing folding, hinder its accurate perception. This may be due
to violation of what Tversky et al. [43] argue is the Apprehension
principle of good depiction, according to which “graphics should
be accurately perceived and appropriately conceived”. A static di-
agram of the important steps in a folding trajectory may be more
effective because it allows comparison and re-inspection of the de-
tails of the motions.

In fact, designers and artists have long used static images to il-
lustrate dynamics of scenes for motion. They have depicted dy-
namics to facilitate visual communication in comic books and sto-
ryboards [28]. The selection of key-frames and their relationship
to the semantics of the perceived action is explored in depth by
Whitaker and Halas [46]. Several researchers [19, 32, 34] have
proposed illustration-based techniques to depict the dynamics of
time-varying data in a compact way. Using principles inspired by
visual art they generate one or a few images that are augmented by
illustrative glyphs to visually communicate time-varying data. For
instance, Joshi and Rheingans [19] have presented a method to con-
vey change over time using illustration-inspired techniques such as
the use of speedlines, flow ribbons, and strobe silhouettes. Nien-
haus and Dollner [32] have used dynamic glyphs such as directed
acyclic graphs and behavior graphs to provide further information
about dynamics in the 3D scene.

3 Overview

The MDMap system consists of both analysis and presentation
phases (Figure 1). MDMap first attempts to discover a set of in-
termediate conformations in the given simulation data. These in-
termediate conformations are semi-stable, and thus, can be char-
acterized as persistent or repeated conformations which occur over
the course of the simulation. We approach this problem using a
hierarchical clustering approach to discover representative confor-
mations; this procedure is detailed in section 4. After we have
identified a set of intermediate states, we analyze the transitions
among them. These transitions form the edges in our graphical rep-
resentation of the simulation data. More formally, the state tran-
sition graph, = (., &), is given by a set,., of conformational
states discovered by our algorithm along with a set,&’, of transi-
tions amongst these states, which are weighted by the frequency of
their occurrence. The procedure for identifying and analyzing these
transitions is given in section 5.

Once the analysis phase is complete, the data can be presented
to the user in a number of different ways. In section 7, we illustrate
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Figure 2: The ability of a representative to visually depict the con-
formations of the timesteps assigned to its cluster is dependent upon
the distribution of intra-cluster distances. We refer to a cluster with
a low mean intra-cluster distance as a tight cluster (top row) and one
with a high intra-cluster distance as a loose cluster (bottom row).
Both of these clusters were taken from the 1YMO MD simulation .

a number of different possible layouts of the state transition graph.
Each of these layouts is augmented by a number of mechanisms de-
signed to help the user comprehend the distributional nature of the
selected states. We also present a level-of-detail mechanism which
can be used to filter edges and reduce visual clutter in a layout. In
section 8, we present the results of MDMap for a number of dif-
ferent data sets, showing, for each, some of the different layouts
which can be produced for the state transition graph. Finally, in
section 9, we present a discussion of the benefits and detriments of
the different layouts of the state transition graph, and suggest how
future work may combine the benefits provided by different layout
strategies while avoiding their individual detriments. We close with
a broader vision for the goals of our future work.

Throughout this paper, unless otherwise specified, we are us-
ing trajectories from a MD simulation of the folding of the human
telomerase RNA pseudoknot (1YMO) as a running illustrative ex-
ample. Telomerase is a ribonucleoprotein complex that adds DNA
sequence repeats called telomeres to the ends of chromosomes in al-
most all cancerous cells. In normal cells, telomeres are successively
cleaved at each generation of cell division until it reaches a criti-
cal length, and the cell is given the signal to degrade and die [26].
Telomerase activity effectively forces the cell to continue reproduc-
ing indefinitely, resulting in cancer. The RNA pseudoknot compo-
nent of the telomerase enzyme has been shown to be critical for its
activity [39], and properly characterizing its mechanism for folding
is fundamental for understanding its biological activity [7, 39].

4 Intermediate State ldentification

MDMap first identifies different conformational states in the MD
simulation. Ideally, we seek to identify intermediate conformations
of the protein. These are semi-stable conformations which persist
for a period of time, and which may be visited repeatedly. Driven
by this notion of an intermediate conformation, we choose to take
a clustering approach to identify candidate states.

4.1 Conformational Distances

A prerequisite to seeking persistent or repeated molecular confor-
mations is a definition of similarity between molecular conforma-
tions. The related literature suggests a number of ways that one
might measure the similarity of two different proteins, or the same
protein in two different conformational states. Here, we employ the
minimum root mean squared distance (RMSD) measure because it
is commonly used and can be quickly computed. However, distance
computation is somewhat orthogonal to the rest of our framework,
and our system can easily be extended to incorporate alternative
metrics. We are concerned solely with different conformations of
the same molecule and can thus assume a fixed residue sequence

over all timesteps. In this regard, determining the minimum RMSD
between two different conformations reduces to finding the optimal
rigid transformation (i.e. translation and rotation) between them
such that the RMSD taken between corresponding atoms in each
conformation is as small as possible. We compute the minimum
RMSD by the QCProt software of Liu et al. [24]. We choose this
approach for its robustness and speed. In particular, when only the
minimum RMSD is required (i.e. we are not concerned with the
actual rigid transformation, only the RMSD which it induces), this
method is the fastest known approach by orders of magnitude. Our
example MD simulation involves the folding of the 1YMO molecule
of 10,000 timesteps. We subsample simulation timesteps for effi-
ciency, it is not strictly necessary. For example, computing entire
10,000 x 10,000 distance matrix requires less than 4 minutes.

4.2 Agglomerative Clustering

The intermediate states persist or repeat during the simulation,
therefore they occur frequently during the simulation process. We
use agglomerative clustering to merge similar conformations into
clusters. Agglomerative clustering starts by considering every ele-
ment as a cluster. Then, during each iteration, the closest clusters
with respect to the chosen inter-cluster distance metric are merged
until the desired number of clusters remain. Specifically, given a
set of clusters, ¢, we merge the closest two clusters C; and C; to
form a new cluster Cpe,,. D(C;,C;) is the distance function between
the two clusters. In this work, we choose the average of the dis-
tances between the constituent conformations in the two clusters as
the metric for merging.

Chew = {CG;UC;},argming, ¢ D(C;,C))
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For each cluster, C;, we produce a representative conformation
R;. It is possible to simply elect a cluster member at random to
serve as the representative. However, in this work we compute a
representative which illustrates the average conformation within its
cluster. This is accomplished by computing representative R; as the
superposition, which is the average of the iteratively aligned con-
formations of all of the members of cluster C;. We compute these
superpositions using the Theseus software of Theobald ez al. [40].

Figure 2 shows an example of our resulting clusters. The su-
perposition of the cluster members is only representative when the
cluster is “tight” with low intra-cluster distance. For the members
of the “loose” clusters, the intra-cluster distance is high. We will
discuss our visualization design in Section 6.1.

One general problem in clustering is to choose a desired number
of clusters, k. We observe the mean, m, of the intra-cluster distances
during the agglomerative process. In each iteration of the agglom-
erative clustering process, the mean intra-cluster distance increases.
We stop merging clusters when the increase of this mean distance
is above a user defined threshold, 7 (7 is 104 in our experiment ).

1 1
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Generating a Hierarchy of Clusters Agglomerative clustering
naturally permits the creation of a cluster hierarchy. MDMap uses
such a hierarchy to provide multi-level exploration of conforma-
tional states. This alleviates the problem of having to choose a
single scale for state identification and it is particularly useful for
exploring sub-clusters of the loose clusters. The initial coarse-grain
clusters are refined by decreasing T geometrically as 7j1| = r7;
(r = 1.5 in our experiments) and extracting finer-grain clusters.
These new clusters exhibit a parent-child relationship with those
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Figure 3: This figure illustrates how state (cluster) IDs change as the
number of clusters increases. The x-axis of each plot represents the
timesteps of the simulation while the y-axis represents the cluster
ID assigned to each timestep. Thus, jumps in the graph denote
transitions between states. As we increase the number of clusters
from 5 (a) to 20 (d), note how the stable and semi-stable states (IDs
3 and 1 respectively) remain, while the less stable states (around
timesteps 500 — 700) are split into sub-states of increasing sparsity
and transience.

at the previous level which is defined by the agglomerative cluster-
ing tree. We stop subdividing a cluster when it only has a small
number of members (0.5% in our experiments).

5 Transitions Amongst States

Let the set of n conformational states be given by . = {s; | 0 <
i < n}. Each time step of the original simulation is identified with
one of the n states, such that the state identified with time step ¢ is
given by s;. Given the state for each time step, we can now infer the
transitions which occur between these states. These transitions will
become the edges in our state transition graph. Let the sequence of
time steps in the simulation be given by 7' = {z; }fV: Bl. N is the num-
ber of timesteps. We define the set of edges in the state transition
graph for this simulation as follows:

& ={eij=(sy.s) [tj=ti+1} s, #s, M

In this set, each edge denotes a transition from state s;, to state
st;- Such transitions will typically occur many times over the course
of the simulation. It is useful to record not only what transitions
occur, but the frequency with which they happen. We augment the
edge set given in equation 1 with a frequency count which measures
how many times each transition occurs. We refer to this augmented
edge set as &, and denote the frequency of edge ¢; j as ®(e;j). This
frequency information will be used later as a level-of-detail mecha-
nism to highlight the most frequent transitions. Aesthetically, filter-
ing by edge frequency can also be used as a mechanism to reduce
visual clutter while still portraying the dominant transitions in the
state transition graph.

There is a strong relationship between the number of clusters
one discovers and the complexity of the transitions between them.
In particular, when large clusters are split, the new clusters they
produce will either correspond to the refinement of a particular con-
formational state into two or more well defined sub-states, or to the
removal of a few of the most anomalous elements from the large

cluster. In the former of these cases, the newly introduced clusters
will tend to have cardinalities of the same order, and a new semi-
stable state is discovered; this tends to introduce a well-behaved set
of transitions where new edges are introduced between only a small
number of other states. In the latter of these cases, however, the
sub-clusters produced tend to have markedly different cardinalities,
and usually don’t exhibit much stability. They tend to participate in
a large number of transitions. Figure 3 illustrates the effect of the
number of clusters on the set of transitions.

6 State Transition Graph Visualization

We visualize MD simulations as a state transition graph. The nodes
represent the intermediate states, and are visualized as detailed in
section 6.1. The edges show transitions between molecular states
in the simulation, and are visualized as described in section 6.2.
Intuitively, the directed state transition graph characterizes the flow
of the molecule across the conformational landscape explored by
the simulation.

6.1 Visualizing States

The nodes in the state transition graph correspond to the clusters
of molecular conformations discovered in the simulation. For each
node, we display the following information of the cluster; the rep-
resentative conformation, the variability of the cluster, and the size
of the cluster.

The representative conformation is the superposition of the clus-
ter members. As shown in Figure 2, the superposition of confor-
mations provides a good example for the members in tight clusters,
while the conformation of members in loose clusters varies. When
we display the state transition graph to the user, we denote each
cluster by a rendering of its representative conformation. Each of
these representative renderings is paired with a circle, which we
use to convey additional information about the corresponding clus-
ter. The color of the circles show the cluster variability from blue
(low) to red (high), to ensure the users are aware of the represen-
tative power of the superposition. Furthermore, the size of the cir-
cle surrounding the representative conformation is proportional to
the relative size of the cluster (adjusted according to a logarithmic
scale). The shape of the protein is very stable in its folded native
states, however it varies greatly when unfolded. The protein re-
peatedly opens and closes during the folding process as it attempts
to take on the minimal energy (fully folded) conformation. This
naturally results in many small and variable clusters of unfolded
conformations and proportionally larger but fewer clusters arising
from the stable folded timesteps. The logarithmic scale allows one
to appropriately visualize this large range of cluster sizes.

6.2 Visualizing Transitions

We show the transitions of the simulation process as directed edges
connecting different states. We acquire these edges from the raw
simulation data; they are not expected to be clean. The state tran-
sition graph includes many edges, not all of which are highly sig-
nificant. We address this issue in a few ways. First, we visually
prioritize the transitions by drawing edges with widths proportional
to their frequencies and allow interactive filtering. Furthermore, to
disambiguate the meaning of transitions between highly occupied
states, which may be a result of over-simplifying a cluster, we al-
low interactive hierarchical refinements of the states. Finally, we
represent the bidirectional transitions on one edge with two lines in
different directions to further reduce visual clutter.

Interactive Edge Filtering We provide a slider interface for
users to filter the edges based on transition frequencies. Rare tran-
sitions may be removed to favor the frequent transitions shown with
thick edges. When users find that certain edges or states occlude in-
formation, they can choose to de-activate them to reduce the visual
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Figure 4: (a) A graph with uniform edge widths. (b) The (a) graph
with frequency-weighted edges and filtering of less important transi-
tions. When the user deactivates the center state of (b), they reduce
clutter to focus on surrounding transitions in (c).
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Figure 5: A coarse cluster is expanded to reveal refined states.

clutter. Edges that connect to the de-activated states are also dis-
abled. Figure 4 shows an example.

Exploring the Hierarchy Sections 6.1 and 6.2 describe how
a particular level of the the graph is visualized. Additionally, we
allow the user to explore the hierarchical structure of the state tran-
sition graph interactively. Clicking on a state, s, at the current level,
expands the cluster and displays all of its children. The screen po-
sition and zoom level are automatically adjusted to bring the newly
expanded cluster into focus. This process may be repeated recur-
sively to explore deeper levels of the hierarchy. Figure 5 shows this
expansion.

Conversely, right-clicking collapses the current cluster into its
parent. Again, the position and zoom level are automatically ad-
justed to bring the state transition graph at the previous resolution
level into focus. These simple viewing mechanisms, layered upon
the powerfully descriptive hierarchical state transition graph, allow
the user to explore the putatively identified intermediate states, and
to elucidate the structure represented by relatively loose clusters
without introducing unnecessary and unwieldy clutter into the vi-
sualization.
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Figure 6: (a) Conformational and spectral (shown) layouts may place
some nodes in close proximity thus introducing overlaps. (b) We use
a grid-based adjustment to eliminate overlaps while maintaining the
proper spatial relationships.

7 Laying out the MD Simulations

One of the main contributions of this paper is visualizing time vary-
ing MD simulations using state-transition diagrams. In this section,
we examine the application of a variety of different graph layout
approaches to the state transition graph extracted via the methods
detailed in sections 4 and 5. In particular, we examine three ap-
proaches; conformational embedding and spectral graph layout, hi-
erarchical layout, and force directed layout.

Each of them exhibits some advantages. The conformational em-
bedding groups similar conformations nearby in the layout, while
the spectral graph layout maintains spatial proximity between states
sharing strong edges. The hierarchical layout orders the states ac-
cording to the transition direction and tends to do the best job at
avoiding edge crossings. Finally, the force directed layout tends
to place tightly connected groups of states close to each other, and
subsequently aids in the visualization of tightly connected compo-
nents.

Conformational Embedding Given the state transition graph,
¢, we seek to arrange the representative states so that their layout
reflects the underlying conformational space of the biomolecule.

To achieve this, we compute a distance metric d(-, -) that mea-
sures the distance between the conformations in a high dimen-
sional vector space (RN where N is the number of atoms in the
biomolecule). Then we seek a low-dimensional embedding of the
conformations which attempts to preserve the high dimensional dis-
tances. To solve this dimensionality reduction problem, we employ
the Laplacian Eigenmap algorithm of Belkin et al. [6] to determine
the initial two-dimensional embedding of the biomolecular confor-
mations. We use the minimum RMSD, as computed by the QCProt
software of Liu er al. [24] as our distance between biomolecular
conformations. We find this layout naturally clusters conforma-
tions.

Spectral Graph Layout In addition to the conformational em-
bedding described above, we can also employ a traditional spectral
graph layout [21]. Unlike the conformational embedding, the spec-
tral graph layout considers the weighted adjacency matrix of the
state transition graph. In this layout, we are concerned primarily
with the proximal placement of nodes sharing strong edges. Fig-
ure 6 shows an example of such an embedding.

We find that whenever transitions between two states occurs fre-
quently, the spectral graph layout will place these nodes close to-
gether. This approach is in some sense dual to the conformational
embedding. The conformational embedding attempts to respect
conformational similarity while the spectral graph layout attempts
to respect similarity as defined by the frequency of transitions (i.e.
the weights of edges).
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Figure 7: (a) The hierarchical layout attempts to minimize edge
crossings by sorting the nodes and edges. (b) The force directed
layout models the graph as a body-spring network and minimizes the
spring energies to determine node positions.

Hierarchical Layout A hierarchical layout [10] of graphs lays
out edges in one direction (top-down or left-right). This strategy
aims to avoid edge crossings, keeps the edges short, and favors
symmetry.

Figure 7(a) shows an example of the hierarchical layout applied
to a state transition graph. The layout sorts the edges of the graph in
the top-down direction. The hierarchical layout method places the
starting states and ending states at the two ends if the graph does
not contain cycles. For general graphs such as the one given in
figure 7(a), it tries to break the cycle and places the end node near
the top or bottom end. The directional sorting attempts to order the
states from the start to the end. We find this layout helps to maintain
the time sequence information.

Force Directed Layout The force directed layout algorithm
models the input graph as a physical spring system. We apply the
popular Fruchterman-Reingold algorithm [11] to layout the protein
folding state diagrams in a force directed manner.

Figure 7(b) shows an example of the force directed layout ap-
plied to a MD state transition graph. This approach places highly
connected nodes close to each other and tends to highlight the
strongly-connected components of the graph. Similar to the edge-
oriented spectral layout, it places the tightly connected nodes in
close spatial proximity. This results in clusters of nodes exhibit-
ing strongly-connected components. In this example, we find the
strongly-connected components show different groups of confor-
mations with frequent transitions. The edges between the connected
components show the pathway for transitioning from one group to
another.

8 Results and Discussion

‘We apply our pipeline in this paper to visualize MD simulations of
three different RNAs. The simulations shows the folding process
of the RNA molecule with multiple trajectories. Each trajectory
consists of 10,000 — 30,000 timesteps. We downsample them to
1000 — 3000 timesteps to speed up computation; this downsampling
should be acceptable since, by definition, we expect intermediate
conformations to be persistent. The entire analysis pipeline takes
less than 1 minute for all of the trajectories we analyzed, and the
graph layout and exploration are interactive.

8.1 Datasets

We performed coarse-grained MD simulations using the Three In-
teraction Site (TIS) Model as the energy function, and the details
and parameters of the TIS model are described elsewhere [17].
The simulations were performed for HIV TAR (1ANR) [39], SRV-
1 pseudoknot [1] (1E95), and the human telomerase pseudo-
knot (1YMO) [30]. The underdamped thermodynamic simulations

Molecule Timesteps RMSD(s) Clustering(s) Gen. Reps(s)
1YMO 1000 1.99 0.218 2.34
1ANR 3436 19.09 11.75 20.15
1E95 3000 21.93 7.68 124

Table 1: This table shows some example performance statistics from
the analysis phase of MDMap . The leftmost column denotes the
name of the molecule for which the MD trajectory was analyzed.
The second column gives the number of timesteps analyzed for each
trajectory (1/10t" of the total timesteps of the full trajectory). The
final three columns give the timing, in seconds, for the computation
of the RMSD distance matrix, agglomerative clustering procedure,
and generation of cluster representatives, respectively.

were performed at the respective melting temperature of the RNA
molecules such that multiple transitions between the folded and
unfolded states, as well as all of the intermediate states, were ob-
served.

8.2 Experimental Setup and Performance

We performed all experiments on the Linux platform using the In-
tel Xeon 5140 processors. We implemented the hierarchical clus-
tering of protein conformations using the Pycluster [9] package.
Scipy [18] packages provide the routines necessary to perform the
conformational embedding. Graphviz [12] provides the hierarchi-
cal and force directed graph layouts, while the NetworkX [15] pack-
age provides the spectral layout. We implemented the interactive
viewer using Qt.

Table 1 provides a summary of some performance statistics for
the analysis phase of MDMap . The time required for each step
of the analysis process depends not only on the amount of data, but
also on the data’s particular distribution (e.g. the distribution of dis-
tances among the timesteps in a simulation). For all of the datasets
we analyzed, the identification of state transitions required a negli-
gible amount of time (< 0.01s), so we have omitted the timing of
this step from table 1.

8.3 Layout and Display of Example Data

In Figure 8, we show different layouts for two trajectories. The
HIV TAR trajectory is visualized in Figure 8(a) and Figure 8(b).
Figure 8(c) and Figure 8(d) show the SRV 1 trajectory.

Each of the graph layout strategies we employ exhibit certain
strengths and weaknesses. The conformational embedding does a
particularly good job of placing states with similar conformations
in close proximity. This is useful to gain an intuitive notion of
the distribution of discovered intermediate states over the space of
molecular conformations. However, the conformational embedding
procedure compares all state representatives with each other, essen-
tially ignoring the information encoded in the edges of the state
transition graph. Thus, it tends to produce layouts with more edge
crossings than other methods when there are many transitions be-
tween conformationally dissimilar states. Figure 8(b) shows the
result of applying the conformational embedding to a MD trajec-
tory of the HIV TAR molecule. As expected, the states are nicely
grouped, and we can see two major conformational clusters. How-
ever, when the edges are drawn, this placement of states results in
a lot of edge crossings and overlaps; though these effects can be
mitigated by employing our edge filtering tool, or by de-activating
states which are not currently of interest.

Because the hierarchical layout algorithm attempts to minimize
edge crossings, it tends to produce the least cluttered visualizations
when all edges are drawn. This layout is most beneficial when one
wishes to visualize the full state transition graph with its unfiltered
collection of edges and states. Therefore, the hierarchical layout
tends to produce some of the best overview diagrams of the state
transition graph. Figure 8(a) shows the hierarchical layout of a state
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Figure 8: These images show each of the different layouts

which MDMap can employ in visualizing the state transition graphs
of MD simulations. (a) and (b) show a trajectory of the HIV TAR
simulation using respectively the hierarchical layout and conforma-
tional embedding. (c) and (d) visualize a SRV 1 trajectory using
force-directed layout and a spectral graph layout. As discussed in
section 8.3, each of these layout strategies exhibit certain benefits.

transition graph from a trajectory of the HIV TAR molecule. The
quantity and distribution of edges present in this graph tends to re-
sult in visual clutter when other layouts are employed. However, the
hierarchical layout yields a visually appealing depiction of this state
transition graph, even when all of the edges are shown. Despite
the desirable properties of the hierarchical layout, the placement
of the states themselves often fail to be meaningful. In particular,
the layout has no mechanism to highlight states which are confor-
mationally similar or between which frequent transitions occur. In
certain cases, such clusterings of conformations and transitions can
be important; yet these properties can be overlooked when just vi-
sualizing the state transition graph via the hierarchical layout.

Both the force directed layout and the spectral layout clearly de-
pict the one strongly connected component and one other state in
the transition graph of the SRV1 trajectory. The force directed lay-
out arranges the states as a planar network, whereas the spectral
layout arranges them in a line like fashion. This is because the first
Laplacian eigenvector represents the optimal linear embedding. It
will be very interesting to investigate if this ordering corresponds to
the true dynamics of the SRV1 molecule. The spectral layout lined
up the states in this MD simulation in a data-driven arrangement.

In addition, we show visualizations of multiple trajectories of
the human telomerase pseudoknot simulation. Figure 9 shows hier-
archical layouts of four different trajectories. We found trajectory
three contains considerably less intermediate states than the other
three trajectories. As the hierarchical layout attempts to sort the
state transition graphs according to the transition order from top to
bottom. We see three out of the four trajectories have the stable
folded state at either end of the diagram.
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Figure 9: We computed four different trajectories of the human
telomerase pseudoknot 1YMO simulations and applied hierarchical
layouts to visualize them.

9 Conclusion and Future Work

We have presented MDMap, which encompasses a novel way
to visualize molecular dynamics simulations as a state transition
graph. MDMap detects intermediate conformational states in a MD
simulation, and analyzes the transitions amongst these states to pro-
duce a state transition graph given raw MD simulation data. The
state transition graphs are then laid out, and can be browsed by
the user in 2D. In two-dimensional layouts, we have compared the
relative advantages of several layout schemes, such as conforma-
tional embeddings, spectral graph layout, hierarchical layout and
force-directed layout. We augment the display of the state transi-
tion graph with a number of user interaction mechanisms, such as
edge filtering and node activation/de-activation, which are designed
to reduce visual clutter and allow the user to search for particular
patterns in the graph. Furthermore, we employ circles of varying
colors and sizes to present the user with the statistical character-
istics of the clusters from which intermediate state representations
are formed.

We believe that our system conforms well to the apprehen-
sion principle of good graphics depiction advocated by previous
research[43]. Our research leverages the well established view
in the scientific community that biomolecules navigate a complex
folding landscape in search of the folded structure. The edge
strengths give a visual indication of the strength of the flow present
in different pathways through the trajectory space.

The idea of visual summarization of time-varying data, either ac-
quired or simulated, using state transition graphs is a powerful one.
Stochastic simulation is a widely used tool in data driven sciences.
In addition to driving MD simulations it finds widespread use in a
number of other application domains, such as climate studies, nano-
scale assembly, network traffic analysis and material science. We
believe that visualization techniques similar to those presented here
are highly likely to find ready applications in these diverse fields.
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