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Abstract dichotomy of immediate-mode simplifications and retained-

mode hardware-supported acceleration.
View-dependentsimplification has emerged as a powerfultool A Skip Strip stores the vertex hierarchy nodes in a skip-list-
for gl’aphics acceleration in visualization of Complex environ- like manner with path Compression_ Our approach combines
ments. However, view-dependent simplification techniques the advantages of the two methods — selection of varied level of
have not been able to take full advantage of the underlying detail at different regions of the surface from view-dependent
graphics hardware. Specifically, triangle strips are a widely simplification and faster rendering from triangle strip repre-
used hardware-supported mechanism to compactly represenkentations. In addition, Skip Strips perform edge collapse and
and efficiently render static triangle meshes. However, in yvertex split in constant time per operation, and the test to pre-
a view-dependent framework, the triangle mesh connectiv- vent foldovers at run time is done much faster as a result of
ity changes at every frame making it difficult to use trian- ysing compact dependency lists. As other view-dependent
gle strips. In this paper we present a novel data-structure, simplification approaches, Skip Strips also take advantage of
Skip Strip, that efficiently maintains triangle strips during such  coherence between frames and incrementally update the dis-
view-dependent changes. A Skip Strip stores the vertex hi- played triangle strips. By using triangle strips, our algorithm
erarchy nodes in a skip-list-like manner with path compres- s able to display the same number of triangles faster and uses
sion. We anticipate that Skip Strips will provide aroad-mapto |ess memory to store the active set of triangles.
combine rendering acceleration techniques for static datasets,
typical of retained-mode graphics applications, with those for

dynamic datasets found in immediate-mode applications. 2 Previous Work

1 Introduction In this section we give an overview of previous work done
in the areas of view-dependent simplifications, triangle strip
Recent advances in three-dimensional adtjois simulation, generation, and path compression data-structures.

and design technologies have led to generation of datasets
that are beyond the interactive rendering caliggs of cur-
rent graphics hardware. Several software and algorithmic so- 2.1 View-Dependent Simplifications
lutions have been recently proposed to bridge the increasing
gap between hardware capabilities and the complexity of the Most of the previous work on generating multiresolution hi-
graphics datasets. These include level-of-detail rendering with erarchies for level-of-detail-based rendering has concentrated
multi-resolution hierarchies, occlusion culling, and image- on computing a fixed set of view-independent levels of de-
based rendering. Graphics rendering has also been acceleratethil. At runtime an appropriate level of detail is selected based
through compact representations of polygonal meshes usingon viewing parameters. Such methods are overly restrictive
data-structures such as triangle strips and triangle fans. and do not take into account finer image-space feedback such
View-dependent simplifications have been recently intro- as light position, visual acuity, silhouettes, and view direc-
duced to enable fine-grained changes to multiresolution hi- tion. Recent advances to address some of these issues in a
erarchies that depend on parameters such as view location,view-dependent manner take advantage of the temporal co-
illumination, and speed of motion. Such simplifications herence to adaptively refine or simplify the polygonal envi-
change the mesh structure at every frame to adapt to justronment from one frame to the next. In particular, adaptive
the right level of detail necessary for visual realism. One levels of detail have been used in terrains by Gretsal [8]
drawback of such schemes is that they fail to take advan- and Lindstromet al [13]. A number of techniques for con-
tage of hardware-supported mechanisms for graphics acceler-ducting view-dependent simplifications of generalized polyg-
ation, such as triangle strips. Luebke and Erikson [15] point onal meshesrely on the primitive operations of vertex-split and
out that view-dependent simplification, being an immediate- edge collapse as shown in Figure 1. The efggg in the mesh
mode technique, has a relative disadvantage since most cur-on the left collapses to the vertgxand the resulting mesh is
rent graphics hardware takes advantage of retained-mode rep-shown on the right. Conversely, the verjex the mesh on the
resentations such as display lists that have static geometryright can split to the edgec) to generate the mesh on the left.
and connectivity. To overcome this drawback Hoppe [12] We refer to vertexy as the parent of vertex(asc is created
has proposed a solution to compute triangle strips per frame from p through a vertex djp). The primitives of vertex split
for the view-dependent simplification specific to that frame. and edge collapse were proposed in the context of progressive
In this paper we introduce Skip Strips as a solution to this meshes[11].
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Figure 1: Edge collapse and vertex split

Figure 3: A triangle strip example

View-dependent simplifications using the edge-
collapse/vertex-split primitives include work by Xiat . . . . .
al [20], Hoppe [12], GeZiecet al [9], and El-Sana and generalized triangle strips for a given triangle mesh model
Varshney [4]. View-dependent simplifications by Luebke [1]. The algorithm tries to generate strips which minimize the
and Erikson [15], and De Floriangt al [3] do not rely number o_f on_e-trla_ngle strips. This algorithm choos_esthe tri-
on the edge-collépse primitive. Our work is most directly angle Wh'c.h IS ac_jjacent_to the least number of nelghb_ors as
applicable to view-dependent simplifications that are based (€ next triangle in a strip. Evares al [6] use global adja-
upon the vertex-difedge-collapse primitive; its extensionto ~ ¢€NY information in conjunction with several heuristics such
more general view-dependent simplifications is a part of our S Maximizing the length of each strip, minimizing swaps, and
planned future work. mlnlmlzmg_the number of smgle-tnanglt_a strips. _Speckmann
and Snoeyink [17] have computed the triangle strips for trian-
gulated irregular networks by creating a spanning tree of the
2.2 Triangle Strips dual graph, and then traversing the tree in a modified depth-
first fashion. Chow [2], Taubiat al [19], and Gumhold and

Triangle strips provide a compact representation of triangular strager [10] have used strips to efficiently compress polygonal
meshes and are supported by several graphics APIs includ-meshes.

ing OpenGL. Triangle strips enable fast rendering and trans-
mission of triangular meshes. An example triangle strip in .. .
the model of a cow is shown in Figure 2. The set of trian- 2.3 Efficient Link Traversal

gles shown in Figure 3(a) can be compactly represented by | et ys study what happens when an edge collapses in a triangle
a triangle St”P,(t}; 2,3,4, 5;t6)’ where thefld triangle is de-  gyin  Figure 4 shows such a situation. As can be seen, the
scribed by the™, (i + 1), and(i + 2)" vertices in this  results of an edge collapse can be represented by replacing all

sequence. Such triangle strips are referred weasiential tri- occurrences of the child vertexwith the parent vertex. In
angle strips A sequential triangle strip allows rendering of  this example¢ = 4 andp = 2.

n triangles using only: + 2 vertices instead o3n vertices.
This results in substantial saving for memory bandwidth and

computation of per-vertex operations such as transformations, : 2 e o e
lighting, and clipping. Sequential triangle strips cannot how- Mﬁe

ever represent general sequences of triangles, such as the one

shown in Figure 3(b). To represent such triangle sequences,

the notion of triangle strips has been extendeddoeralized 123456 123256
triangle stripswhere the two vertices of the previous trian- (a) (b)

gle can be swapped. This can be also simulated by repeating

vertices. Thus, the triangle sequence in Figure 3(b) can be Figure 4: Edge Collapse in a Triangle Strip

represented a4, 2, 3,4,5,4,6,7).

The above example illustrates that to maintain triangle
strips under view-dependent changesto the triangle mesh con-
nectivity, we should replace each vertex in a triangle strip by
its nearest uncollapsed ancestor. In an arbitrarily long se-
guence of such edge collapses, it is easy to see why efficient
traversal of links to a vertex’'s ancestors becomes important.

Skip list[16] has been proposed as an efficient pralzb
tic data-structure to store and retrieve data. Skip lists can also
be used for efficient compression of pointer paths. Consider a
simple linked list as shown in Figure 5(a). Reachingti&
node on this list requires @] pointer hops. Consider next
a data-structure that has/2 additional pointers that connect
linked list nodes that are 2 away (refer Figure 5(b)). Using
) ] o these additional pointers, any node on the list can be accessed

Figure 2: A triangle strip in a cow model in O(n/2) time. Skip lists generate @) such additional point-
ers in a probabilistic manner to providel@y n) time access
Akeley et al [1] have developed a program that constructs in the average case (refer Figure 5(c)).




Low Detail

27 [t -l -fad-+po [H-Bef+w Active Nodes o

& 1 B High Detail

BBl kat bl e VA E 29

ool el
(c)

w
I

Figure 6: Varying detail in a Merge Tree
Figure 5: A Skip list example

foldovers resulting in visual artifacts such as shading disconti-

In a skip list, a node that hasforward pointers is a level nuities. To avoid these artifacts Xéd al[20] propose the con-
node. The level of a node is determined in a prolistlz man- cept of dependencies or constraints that necessitate the pres-
ner. The search for an element is done by traversing forward ence of the entire neighborhood of an edge before it is col-
pointers that do not overshoot the required element. When no lapsed (or its parent vertex is split). Thus, for the example
more progress is possible, the search moves down to the nextshown in Figure 1, the neighborhood of edgeshould con-
level. This is shown by the gray path in Figure 5(c). To ac- Sist exactly of vertices, .. .n¢ for c to collapse tg. Sim-
complish insertion or deletion of an element in a skip list, a ilarly, for the vertexp to split toc, the vertices adjacent o
search is carried out for that element using the above method. should be exactly the seb . ..ne. Our current implementa-
A vector of pointers is set up during this search to represent tion of merge trees can construct the merge tree for 69K trian-
the set of pointers that are changed to implement the insert or gles bunny model in0.3 seconds on an SGI Onyx 2.
delete operation.

3.2 Generating Triangle Strips

3 Technical BaCkground We use theéStripeprogram by Evanst al[6] to generate high

quality triangle strips. This approach considers the problem of
constructing good triangle strips from polygonal models. Of-

ten such models are not fully triangulated, and contain quadri-
laterals and other non-triangular faces, which must be trian-
gulated prior to rendering. The choice of triangulation can

significantly impact the cost of the resulting strips. Evanal

In this paper we build upon two previous algorithms — con-
struction of vertex hierarchy for view-dependent simplifica-
tions [20, 12] and construction of efficient triangle strips [6].
Let us overview these two algorithms next.

3.1 Construction of Merge Trees have experimented with several variants of local and global al-
gorithms; the details are available in [6]. After comparing the
Merge trees have been introduced by ¥taal [20] as a data- results from20 different local and global approaches on over

structure built upon progressive meshes [11] to enable real- 200 datasets, the best option has been empirically observed to
time view-dependent rendering of an object. As discussed ear- use the global row or column strips with a patch cutoff size of
lier, let the vertexp in Figure 1 be considered the parent of 5. In this approach the model is first partitioned into regions
the vertexc. Theneighborhooaf a vertexv is defined as the that have collections of: x n quadrilaterals arranged im

set of triangles that are adjacentdo The neighborhood of rows andn columns, which is referred to aspmtch Each

an edge(v., vp) is defined as the union of neighborhoods of patch whose number of quadrilateralsy, is greater than a

v, anduvs. The merge tree is constructed in a bottom-up fash- specified cutoff, in this cas®g is converted into one strip at a
ion from a high-detail mesh to a low-detail mesh by storing cost of three swaps per turn. Further, every such strip is ex-
these parent-child relationships (representing edge collapses)ended backwards from the starting quadrilateral and forwards
in a hierarchical manner over the surface of an object. At each from the ending quadrilateral of the patch to the extent possi-
levell of the tree a maximal set of edge-collapsesis selected in ble. On triangulated models like the ones we consider in this
the shortest-edge-first order and with the constraint that their paper,Stripehas been found to work as well as other public-
neighborhoods do not overlap. The vertices remaining after domain triangle strip convertersStripe Version 2.0 [5] con-

these edge collapses are promoted to lévell. verts the 69K triangles bunny model into triangle strips with a
View-dependent simplification is achieved by performing total of 90K vertices ir6 seconds on an SGI Onyx2.
edge-collapses and vertex-splits on thentgialation used for Stripe generates efficient triangle strips but requires more

display, depending upon view-dependent parameters such agime than simplistic methods such as the greedy method [12].
lighting (detail is directly proportional to intensity gradient); Since we wanted to do comparisons with an on-line algorithm
polygon orientation, (high detail for silhouettes and low de- to convert polygonal meshes into triangle strips we also de-
tail for backfacing regions) and screen-space projection. This cided to implement the greedy method. The greedy method
is shown in Figure 6. Since there is a high temporal coher- proceeds as follows. From a given triangle we extend a tri-
ence the selected levels in the merge tree change only gradu-angle strip as far as possible. Once it is no longer possible
ally from frame to frame. Unconstrained edge-collapses and to extend the triangle strip, we stop and begin a new triangle
vertex-splits during runtime can be shown to result in mesh strip. In our current implementation of the greedy method we



are working only with sequential triangle strips as discussedin ,
Section 2.2. We found that for an on-line method, the greedy Vert ex
method is a better choice th&tripe since the former takes Info [P
much less time, even though it generates abddut 20% l l
more vertices. The greedy method take3 seconds on an

SGI Onyx2 to convert a 69K triangle bunny model to triangle

strips and generates 96K vertices.
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In our approach we generate a merge tree and the triangle strip
representation of the original polygonal model off-line. The «
merge tree file, which contains the parent-child relationships Ver t ex J 17 Collapse
for each node of the tree, is constructed as overviewed in Sec- Info |P[¥
tion 3.1 and described in [20]. Even though our implementa-

-

tion uses merge trees, the concept of Skip Strips is quite gen- ¢ l .
eral and can be used in conjunction with other vertex-collapse- ! . !
based simplification schemes as well. The triangle strip repre-

sentation is generated using tBfipeprogram as overviewed c vertex p J
above in Section 3.2 and described in [6]. At run-time we load 1 Info

the merge tree and triangle strip representations generated dur- L ¢

ing preprocessing and build ti&kip Stripdata-structure on the

fly. Then, depending on scene parameters such as eye posi-

tion, local illumination, front/back-facing regions, we perform Figure 7. A Skip Strip node

vertex split and edge collapse operations directly on the Skip

Strips. The information from Skip Strips is then used to gen-

erate triangle strips for display. representing the leaves of the merge tree (the highest detail
vertices in the original model). Since according to the merge
tree vertex 2 can merge to vertex 1, the parent pointer for the
Skip Strip node 2 will point to Skip Strip node 1 and the child
A Skip Strip is an array of Skip Strip nodes. Each Skip Strip pointer for the node 1 will point to node 2. Similarly, the par-
node contains vertex information, a list of child pointers and a €ntand child pointers of Skip Strip nodes 3 and 4 will be set.
parent pointer. This can be seen in Figure 7 where the parentThis stage is shown in Figure 8(b). The edge collapse 1
pointer is shown on the right and the list of child pointers is can be represented in the Skip Strip as a parent pointer from
shown on the left of each Skip Strip node. We shall see in node 3 to node 1 and a child pointer from node 1 to node 3.
Section 4.3 how to generalize this data-structure to support a The completed Skip Strip structure is shown in Figure 8(c).

list of parent pointers to accelerate access in an edge-collapse

4.1 Skip Strip data-structure

hierarchy.
A Skip Strip is constructed at run time from the merge tree 0
and triangle strip representations. A Skip Strip node is allo-
cated for every merge tree leaf (terminal node) and parent- 0 e
child pointers are set up to mimic the merge tree structure.
In our current implementation we are assuming that a child

vertexc collapses to a parent vertex For this case, a Skip

Strip node corresponding to a vertevill have child pointers a a e e

to all its children, including:, that collapse to it at different c|lpl]
stages of simplification. In general, if there argertices then (a)

the average height of the merge tree€ilog n). Thus, the Cle| 2 |p
average length of this child-pointer list for a Skip Strip node

is O(log n). At a given time only one of these child pointers c|l|pl] c|3 (p[] c|3|p
is flaggedactiveand represents the node that will result from E E E

the most imminent split. Each Skip Strippde points to its el 2 |p Cle |4 |p Clel 4 |p
immediate parent via the parent pointer. Parent pointer of the

node is markedctiveif this node has collapsed to its parent at (b) (c)

a given stage of simplification; otherwise it is markeactive

To illustrate the Skip Strip data-structure, let us see how it ) o ) ) .
is built from a merge tree. Figure 8(a) shows a hypothetical Figure 8: Building a Simple Skip Strip
merge tree over four vertices 1 to 4. As in all the merge tree
diagrams in this paper, the right node is the child node and  The method that we have outlined above assumes that in
the left is the parent node (as defined by Figure 1). Let us an edge collapse fromto p, the new vertex ig. However,
assume that we are dealing with edge collapses in which one several other researchers have pointed out the advantage of
vertex collapses to another (i.e. no new vertices are created).creating new vertices during edge collapses. These new ver-
The equivalent Skip Strip data-structure will have four nodes tices could be created for accomplishing geomorphs [11] or for



better placement of approximating vertices using sophisticated 4.2.2 Determination of display strips
error metrics [7, 14, 4]. For incorporating such simplification
metrics into the framework of Skip Strips we suggest storing
multiple coordinate sets, once per approximating vertex, in the
child pointer of the Skip Strip node.

The graphics dataset is represented as a set of triangle strips.
Each triangle strip has two representations — the original high-
est resolution triangle strip that was generated using pre-
processing, and the Skip-Strip-derived run-time representation
of it that represents a triangle strip suitable for the current level
of detail. We refer to the former asaiginal triangle strip

and the latter as display strip At each frame we first per-
form view dependent edge collapses/vertex splits as outlined
Once the Skip Strip has been constructed it is easy to con-in Section 4.2.1. Each time an edge collapses or vertex splits,
struct an adaptive level-of-detail mesh representation during all display strips that contain that edge are flagged as modified.
run-time. Real-time adaptive mesh representation involves the At the end of these simplifications, if a display strip remains
determination of the vertices and triangle strips at the current unmodified, it is used for rendering. However, if a display strip
level of detail. We shall refer to the vertices and triangle strips is modified we discard it and begin generating its replacement
selected for display at a given frame display verticesand by scanning each vertex in the corresponding original triangle
display strips strip. Each vertex of the original triangle strip has a pointer to
a corresponding node in a Skip Strip. For each vertex's node
in the Skip Strip we check whether its parent pointer is active
or not. If the parent pointer is active we follow the sequence
of active parent pointers until we reach a node that has an in-
Determination of display vertices proceeds along the same active parent pointer. The vertex information stored with the
lines as proposed in earlier work on view-dependent simpli- flrst nodet_hathas an |nact|ve_parent p(_)lnterls addedto the new
fication [20, 12] where image-space feedback s used to guide diSPlay strip. After the new display strip has been completely
the selection of the level of detail for the mesh. We deter- 9€nerateditis sentto the graphics system for display. )
mine which region of an object to simplify more and which Let us next illustrate how the Skip Strips are used to split
to simplify less using several parameters such as viewer loca- 2nd collapse vertices of a triangle strip to generate the display
tion and orientation, local illumination, and front/back-facing StiPs. Figure 9 shows the original mesh with vertices num-
regions of an object. Similar to merge tree nodes, Skip Strips beredl..10. The two triangle strips representing this mesh are
nodes also storeswitch valueto determine whether to refine, ~labeleda andb. Since no edges have collapsed, the display
merge, or leave a Skip Strip node in its current level. If the Strips are the same as the original triangle strips. Figure 11
computed value of the view-dependent error at a given node Shows the same after two edge collapses( 5, ands — 7)

v is less than thewitch valuestored at node, then nodev to the mesh of Figure 9. In Figure 10 none of the parent

4.2 Real-Time Adaptive Representation

4.2.1 Determination of display vertices

splits. If the computed value is larger than thsitch value
stored at the parent of nodethenv merges.

In addition to the above criteri@ach collapse and split also
depends on the validity of the operation as determined dur-

ing the preprocessing to avoid artifacts such as mesh foldovers

as explained earlier in Section 3.1. One way to avoid such
artifacts is to use dependencies[13, 20]. In [4], we have intro-
duced the concept of implicit dependencies that can test valid-
ity of edge collapse or vertex split in constant time. However,

implicit dependenciesrely on the existence of independent tri-
angles that can be individually tagged. Since in the Skip Strip
data-structure we do not store triangles explicitly it is difficult

to use implicit dependencies. For Skip Strips we can use the
traditional method of storing dependencies explicitly as a set
of adjacent nodes [20]. Instead, we have chosen to optimize
the explicit dependencies by storing only that subset of adja-
cent nodes that do not participate in an ancestor-child relation-

pointers is active (since there have been no edge collapses).
Figure 10 shows the merge tree and the skip strip with one
parent pointer per node, constructed for the mesh in Figure 9
atthe highestdetail. In Figure 11, the parent pointers for nodes
6 and8 pointing to5 and7 respectively, are active and appear
dot shaded. The nodé&sand8 are inactive and appear with
hatched shading.

ship, i.e. we do notinclude an adjacent node in the dependency

list if any of its ancestors is already in the list.

The execution of edge collapse and split operation is donein
a small constant time (only integer increment and flag change
or integer decrement and flag change) as follows. To perform
a merge on the Skip Strip we activate the parent pointer and
increment the child index of the merged node by one, followed
by removing the merged node from the active nodes list. Split
is done by deactivating the parent pointer and decrementing
child index of the split node by one. Then we insert the node

10

Figure 9: Original triangle mesh

4.3 Efficient Skipping for Parent pointers

pointed to by the previous child index into the active nodes As the object moves to a coarse representation, the time spent
list. We have discovered that these simpler operations have in following the active parent pointers increases. On the aver-
reduced the time for checking and performing a vertex splitor age, the maximum number of active parent pointers that one
edge collapse from arouri@;;seconds tGuseconds. might need to traverse i@(log n) — the height of the vertex
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edge collapses

tree rooted at vertex have already collapsed to vertex If

hierarchy. To reduce this time we trade off memory for speed. the triangle strips reference one of the vertices in this sub-tree
To accomplish this we use ideas from path compression [18] rooted at, and if their active parent pointer overshogishen
and skip lists [16] to build a list of parent pointers for each we need to decrementthe active parent pointer until it points to
Skip Strip node. The parent pointers of each node point to a node that is below (in other words has already collapsed).
its ancestors that afe 2, 4, ... ,log n hops away in the edge  Because of a high temporal coherence, these updates are few
collapse hierarchy. By using an efficient, skip-list-like pointer and each requires only one or two ancestor checks to find the
hopping scheme we can reduce thigXxdog log n). Although “correct” ancestor that does not overshoot the first active an-
reducingO(log n) to O(log log n) factor might seem minor, cestor. Likewise, when a vertgxsplits weupdate all pointers
in practice this results in an appreciable difference, especially from triangle strips that point tg as the first active ancestor
when we note that the merge tree height is generally a loga- to point to a lower level ancestor. We would like to note that
rithm to the basé/4 [20]. Thus, even if the edge-collapse- in this application, traversal of triangle strips requires that we
based vertex hierarchy tree is balanced (which it often is not), access each vertex of the triangle strip and, therefore, the over-
the height for a tree over one million vertices (and therefore head of such lazy updates of pointers to reflect split and col-
the worst-case pointer hopping) will & (~ log, ,:(10°)) lapse in Skip Strips is minimal. Figure 12 shows the Skip Strip
while a skip-list-like pointer hopping scheme will only need representation with multiple parent pointers éach node for
to traverse 6+ log, 62) pointers, an order of magnitude im-  the mesh in Figure 9. Note that the active parent and child
provement for present-day datasets. pointers appear shaded.

To efficiently implement traversal of parent pointers, each
Sk_ip Str_ip node has an active parent field to indicate_ which 4 » Further Optimizations
pointer in the parent list to follow to get closest to, without
overshooting, the first active ancestor. We use a lazy update As the model moves to coarser levels the triangle strips begin
scheme to modify the active parent field for each Skip Strip to accumulate identical vertices. Sending such vertices mul-
node. For this we make use of the fact that the vertex hier- tiple times is equivalent to sending degenerate triangles that
archy nodes are collapsed in an accordion-style fashion from do not contribute to the final scene but add an overhead to the
high detail to low detail. In other words, if a vertéxollapses graphics rendering. To address this we filter the triangle strips
to vertexy, then it means thadll vertices that lie in the sub-  while sending them to the graphics engine. We have imple-



mented a simple triangle strip scannerthat detects and replace Results

patterns of vertices of the regular expression fgrm)*t by

(aa) and(ab)™ by (ab) in the sequence of vertices sent for We have implemented Skip Strips and have obtained the re-
rendering. sults shown in Table 1 and Figure 14. All of these results have
been obtained on an SGI Onyx 2 with four R10000 processors,
1 GB RAM. Timings reported here do not assume paralleliza-

tion of the view-dependent simplifications.

Table 1 shows the comparison between rendering datasets
using three modes of view-dependent renderings. The three
modes differ in how triangles are sent for rendering. Iden-
tical parameters of view-dependent simplifications are used
across the three modes resulting in identical sets of triangles
rendered. In the first mode triangles are sent independently
without taking advantage of any adjacency information. In the
second mode triangles determined for display in one frame are
converted into triangle strips using the greedy method for gen-
erating sequential triangle strips. This is the current state-of-

is accomplished by storing two pointers with each collapsible th€-art method for using triangle strips with view-dependent
edge. These pointers point to the two triangle strips to which Simplifications. The third mode involves using Skip Strips to
the two triangle sharing that edge belong. Since the trian- generate display strips for rendering triangles. The compar-

gle strips are computed statically, these pointers are generateoisonSfo”he three modes are shown in Table 1 for four datasets

only once during the pre-processing stage. For non-manifold 2¢r0SS represente_ttiv._e flythroughs (as shown in the_video). The
meshes that can have more than two triangles sharing an edgez:rame Countow indicates the number of frames in the fly-
one can accordingly store one triangle strip pointer per addi- rough path. Thé\dapt Countow indicates the total num-
tional triangle. Whenever an edge collapses at run-time, the 2€r of dge collapse/vertex split operations performed for the
(at most) two triangle strips that are affected have their head- 9Iven flythrough path. Tharis CountandVertsrows repre-

ers flagged asnodified When a display strip is considered sent the total n_umber of trlangle_s and vertices sent for_ ren-
for rendering, we first check to see if its corresponding trian- d€ring, respectively, over the entire flythrough path. Within
gle strip has been modified since the last frame. If it has, we €2ch modé\dapt Display, andTotal indicate the cumulative

update the display strip, otherwise use it as is. times spent over the flythrough paths in ch_anging the v_iew-
dependent detail, rendering, and the total time, respectively.

In online strippingStrip is the time to generate triangle strips
whereas for Skip-Strips, the time to maintain the strips is part
of the Displaytime. As can be seen from these numbers, Skip
Strips result in 85% — 95% improvement over sending raw
triangles and0% — 63% improvement over computing trian-
gle strips on-the-fly from scratch.

As the simplification levels increase and mesh sizes reduce,
it becomes more attractive to perform on-the-fly greedy trian-

Figure 13 shows the relationship between the triangle strip
a (top half of the mesh from Figure 9) and how the display
strip relates to it. As can be seen, a display strip is simply a
linked list of pointers to the triangle strip. At the beginning
of each frame the display strip is updated from the triangle
strip. As the underlying mesh is simplified and vertex repeti-
tions (as detected by triangle strip filtering) increase, it pays to
do two further optimizations: (a) skip over the repetitions, and
(b) change the display strip incrementally from frame to frame
instead of constructing it from the original triangle strip per
frame. The first optimization can be easily accomplished by
using a skip-list-like structure instead of a linked list for the
triangle strip (refer Figure 13(b)). The second optimization

Di spl ay @@@@@@m gle strip computation than to maintain Skip Strips since the

strip

fragmentation amongst triangle strips increases as mentioned
\ in Section 4.4. Merging of triangle strips on the fly addresses
' i | W il this problem to a certain extent, but it is inevitable that at some
Triangle| 7 |6 | 4 |5 |3 |2 |1 stage of simplification it becomes less attractive to maintain
strip . . . . ..
17 Skip Strips. Figure _14 shows our results in determl_nlng t_he
1—*:% threshold above which we found it better to use Skip Strips
3 for the bunny model. We found similar performance curves
(b) for other datasets. Rather than clutter the graph with several
curves, we have simply reported the crossover points for the
Figure 13: (a) Arrows mark edge collapses. (b) Efficient local other datasets on the same graph.
skipping over triangle strip. The datasets used for the above results appear in Figures
15, 16, and 17. In these figures, parts (a) show an interme-
diate level of view-dependent simplification, while parts (b),
We note again that the Skip Strips are computed only once, (), and (d) show how the triangle strips are maintained across
at the pre-processing stage. Therefore, as the simplification different levels of detail using Skip Strips. Colors in parts (a)
increases there comes a stage when triangle strips computediepict object colors, whereas colors in parts (b), (c), and (d)
from a Skip Strip representation are highly fragmented (they denote different triangle strips.
each represent a small number of triangles). To address this is-
sue, we have added a stage in our current implementation that .
performs merging of display strips. This proceeds as follows. 6 Conclusions
We check the triangle strip pointers on the last edge of a dis-
play strip to see if a new display strip is beginning at that edge. We have shown how Skip Strips can provide a convenient
If it is, we extend the current strip effectively merging the two and simple representation to integrate retained-mode data-
strips. structures such as triangle strips with immediate-mode view-



Dataset Bunny | Buddha| AMR | Terrain
Frame count 215 152 101 150
Adapt Count 61.5K 55.2K | 65.8K | 83.5K
Tris count 9.6M 10.5M 6.5M | 12.5M
D | Verts 28.8M| 315M | 195M | 37.5M
2o | Adapt 7.4s 71s| 81s| 105s
% & | Display | 36.5s 41.6s| 22.8s 48.6s
~ | Total 439s| 48.7s| 30.9s| b59.1s
o Verts 15.9M 16.8M | 18.0M | 14.3M

o c | Adapt 10.5s 9.8s| 11.7s| 14.5s
= & | Strip 12.5s| 13.2s| 9.1s| 16.3s
@) ﬁ Display | 20.1s 22.2s| 16.4s| 18.5s
Total 43.1s 452s| 37.2s| 49.3s

Verts 17.3M 18.8M | 16.1M | 16.5M

.y Adapt 3.1s 2.6s 3.2s 4.7s
£ | Display | 24.1s 26.1s| 19.6s| 26.3s
N o | Total 27.2s| 28.7s| 22.8s| 31.0s

Table 1: Performance of view-dependent triangle, triangle
strips on the-fly, and Skip Strips
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Figure 14: Skip-Strips versus stripping online

dependent simplifications. The Skip Strips offer two main ad-
vantages. First, they make pointer hopping along parent links
in any hierarchical vertex collapse scheme efficient. Second,
they simplify the execution of the vertex split and edge col-
lapse operations to be as simple as two integer increment or
decrement operations.

Skip Strips provide the advantage of hardware-assisted ac-
celeration to view-dependent simplifications. However, they
also suffer from some of the same limitations that afflict trian-
gle strips. Thus, Skip Strip performance will not be very good
for datasets that have several discontinuities inasi@$ such
as cracks, T-junctions, normals, colors, and textures. For such

genus-reducing simplifications; we need to test this further.
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