
74	 January/February	2011	 Published	by	the	IEEE	Computer	Society	 0272-1716/11/$26.00	©	2011	IEEE

Camera	Culture

Social Snapshot:
A System for Temporally Coupled
Social Photography
Robert Patro, Cheuk Yiu Ip, Sujal Bista, and Amitabh Varshney ■ University of Maryland, College Park

Since the invention of photography, taking
pictures of people, places, and activities has
become integral to our lives. In the past,

only purposeful, precious moments were the pri-
mary subjects of photography. But technological
advances have brought photography to our every-
day lives in the form of compact cameras and even
cell phone cameras.

The next phase in the photog-
raphy revolution, 3D photogra-
phy, can bring users together to
socialize and collaboratively take
pictures in an entirely new way.
However, transforming a pho-
tographic scene from 2D to 3D
requires introducing multiple im-
ages of the same underlying ge-
ometry from different viewpoints.
The reconstruction of 3D geom-
etry from multiple overlapping
images is the classic structure-
from-motion (SFM) problem in
computer vision. Typically, the in-

struments used to acquire photographs are tediously
calibrated to produce precise measurements.

To simplify 3D photography, our Social Snapshot
system performs active acquisition and recon-
struction of temporally dynamic data. Using mul-
tiple users’ cell phone cameras and no preliminary
calibration, it achieves approximate but visually
convincing renderings of 3D scenes, even though
the quality of such cameras is typically even lower
than that of point-and-shoot devices.

Social Snapshot’s Contributions
Social Snapshot’s contributions fit naturally into
two categories: technical and social.

The technical contributions are improved algo-
rithms and techniques that enhance our system’s
novelty and scalability. For example, Social Snap-
shot produces a textured and colored-mesh recon-
struction from a loosely ordered photo collection,
rather than the sparse or dense point reconstruc-
tions produced by related approaches. In addition,
it features locally optimized mesh generation and
viewing. Finally, it provides camera network capa-
bilities to support synchronized capture of tempo-
rally dynamic data.

The social contributions lead to a new way of
thinking about the interplay between data acqui-
sition and social interactions. They also let us de-
fine social photography as an active, rather than
a passive, endeavor. For example, Social Snapshot
encourages collaborative photography as a social
endeavor, letting users capture dynamic action
by synchronizing their photographs. It leverages
social trends such as online media sharing and
event organization to spur a novel data acquisi-
tion mode.

For a look at some of the previous research on
which Social Snapshot is based, see the “Related
Work in Scene Visualization and Computer Vi-
sion” sidebar on pages 78—79.

System Operations
Social Snapshot includes three main phases: acqui-
sition, reconstruction, and display (see Figure 1).

Social	Snapshot	actively	
acquires	and	reconstructs	
temporally	dynamic	data.	The	
system	enables	spatiotemporal	
3D	photography	using	
commodity	devices,	assisted	
by	their	auxiliary	sensors	
and	network	functionality.	
It	engages	users,	making	
them	active	rather	than	
passive	participants	in	data	
acquisition.

	 IEEE	Computer	Graphics	and	Applications	 75

Acquisition
Modern smart phones are sophisticated devices
with many sensors and facilities. For example,
this project’s experimental platform, the iPhone
3GS, includes a 3-megapixel camera, accelerom-
eter sensors, and Bluetooth connectivity. Phones
from many other vendors (such as Symbian and

Android phones) have similar configurations. The
iPhone 3GS lens gives a field of view of approxi-
mately 60 degrees, which is considered wide in
photography. This field of view facilitates captur-
ing large parts of the scene, including overlaps
with images captured by nearby cameras.

In this phase, participants use network-connected

(b)

(a)

(c)

Take synchronous pictures

1
23

4

Local alignment and blending
during navigation

Camera-positions
reconstruction

Dense-points
reconstruction

Feature identity
resolution

Global models
(inconsistent)Mesh generation

Match features

Extract SIFT features

Figure	1.	The	Social	Snapshot	system	comprises	three	phases:	(a)	During	the	acquisition	phase,	participants	
choose	the	scene	they	wish	to	capture	and	take	synchronous	photos	of	it.	(b)	During	the	reconstruction	phase,	
the	system	uses	the	loosely	ordered	collection	of	photographs	to	construct	a	locally	consistent	3D	model	of	
the	scene	at	each	moment	in	time.	(SIFT	stands	for	scale-invariant	feature	transform.)	(c)	During	the	display	
phase,	users	can	freely	navigate	the	spatiotemporal	reconstruction.

76	 January/February	2011

Camera	Culture

smart phones to acquire synchronized photographs
of a scene (see Figure 2). Social Snapshot’s social
and collaborative aspects are driven by synchroni-
zation using these phones’ network facilities. Be-
cause 3D reconstructions of time-varying scenes
require multiple views, such synchronization is
necessary. We achieve it by using the iPhones’
Bluetooth connections to create a peer-to-peer
network among the phones. One iPhone initiates
connections to its nearby peers. The system aligns
the phones’ clocks using a Bluetooth message
right before each acquisition session to optimize
synchronization. After this alignment, one phone
can trigger the other phones’ cameras to take syn-
chronized photographs. Each user employs his or
her smart phone to take overlapping pictures from
different viewpoints.

The system also records the phone’s orientation
during acquisition, inferring the phone’s coordi-
nate frame from the accelerometers and magne-
tometer. We could also use GPS to track location,
but the current accuracy is far too coarse to be
useful in the acquisition scenarios we consider in
this project. Once the acquisition session is com-
plete, the users can upload the photographs taken
by the phones to the servers for reconstruction
through the broadband 3G or Wi-Fi connections.

Figure 3 shows how Social Snapshot utilizes
the iPhone’s network capabilities. On average, the
Bluetooth message’s delay is only 30 milliseconds,
with an 11-ms standard deviation. The system re-
cords this delay and offsets the clock alignment

(a) (b) (c)

Figure	2.	Social	Snapshot	enables	the	synchronized	acquisition	of	highly	dynamic	data	using	commodity	smart	phones.	(a)	The	
system	uses	a	series	of	synchronously	collected	photographs	to	determine	the	pose	of	the	cameras	employed	for	acquisition.	
(b)	The	system	then	uses	this	information	to	reconstruct	a	dense	point	cloud.	Finally,	the	system	generates	several	locally	optimal	
meshed	surfaces	(one	for	each	input	camera).	(c)	This	is	one	such	surface.	The	viewpoint	is	altered	significantly	from	that	of	the	
acquisition	camera	to	illustrate	the	reconstructed	surface	and	depth	discontinuities.	Capturing	and	reconstructing	such	dynamic	
data	is	only	possible	using	a	highly	synchronized	acquisition	system.

Broadband
3G network

Bluetooth

Figure	3.	During	the	acquisition	phase,	Social	Snapshot	connects	the	
iPhones	in	a	peer-to-peer	network	using	Bluetooth.	This	network	
enables	the	synchronized	acquisition	of	photographs	among	the	
participating	devices.	The	system	then	uploads	the	resultant	data	to	
the	reconstruction	server	using	the	broadband	3G	network.

	 IEEE	Computer	Graphics	and	Applications	 77

appropriately to optimize the synchronization
among the iPhones in the acquisition network.

Reconstruction
During reconstruction, the system transforms the
loosely structured photographs captured during
acquisition into a set of 3D models of the scene as
it varies over time.

Let Pt denote an ordered set of photographs ac-
quired by the system at time t, and let Pt

i be the ith
photograph in this set. We use photograph Pt

i and
image i interchangeably. If the acquisition subject
is dynamic, we consider each set S = Pt indepen-
dently. Otherwise, we consider all sets S Pt t

T= { } =0

of photographs taken during acquisition.

Feature extraction. We use scale-invariant feature
transform (SIFT)1 features because they’re fairly
robust and reliable. The feature extractor con-
sumes an image i and produces a sparse set of
features fi i i i

nf f f= { }0 1, , ,… . Each feature corre-
sponds to a pixel location and provides a descrip-
tor of the feature discovered at this location. The
SIFT feature descriptor is a pair (Q, v), where Q is
the feature’s orientation, and v ∈ R128 is a feature
vector.

Putative feature matching. Once the system has ex-
tracted each image’s features, we must find a set
of correspondences between them to solve the SFM
problem. Typically, the system extracts thousands
of features for each image. So, when trying to find
a putative set of correspondences between image
features, we must use a method that lets us quickly
determine whether a pair of features is a good can-
didate for further examination.

Let fi be the set of features from image i. We con-
sider each feature as a point in a high-dimensional
space, and we build a query structure on the basis
of a spatial, hierarchical decomposition of those
points. Our system does this efficiently using ANN,
a library for approximate-nearest-neighbor search-
ing (www.cs.umd.edu/~mount/ANN). Given such
a structure, we can consider each feature point
not in fi as a query point, and perform a proximity
query on the structure we’ve built.

A pair of features f fi
x

j
y,() constitutes a putative

match if they reside close together in the high-
dimensional feature space with respect to the other
features. More specifically, we consider f fi

x
j
y,()

a putative match if d f f d f fi
x

j
y

i
x

j
z(,) min (,)≤ × ()τ ,

z ≠ x, y, where τ is a threshold. We’ve observed
that τ = 2/3 produces experimentally good re-
sults, and this is what we’ve used in this article.
Figure 4 illustrates this process. We denote the

set of putative correspondences between two fea-
ture sets fi and fj as �mij . This process outputs a
set of putative correspondences (some of which
might be the null set) between each pair of im-
ages in the original dataset.

Inlier estimation. Although the putative-matching
phase does a good job of filtering out highly improb-
able matches, each correspondence is considered
in isolation and depends only on the orientation
and feature vector corresponding to each feature.
The true set of correspondences between two im-
ages will also obey the epipolar constraints. So,
given �mij , we seek the fundamental matrix Mij
relating these two images, which explains the larg-
est subset of �mij .

We compute Mij using the eight-point algo-
rithm.2 To account for the presence of outliers,
we perform this estimation in a Ransac (random
sample consensus) loop. For each pair of images i
and j, m̂ij denotes the inlying correspondences.
We define a correspondence as an inlier when it is
explained by the transformation Mij. We also store
the inlier ratio # ˆ #m mij ij�() .

Approximate-nearest-neighbor
query structure in R128

(,)

(,)

(,)

(,)

(,)

(,)

(,)

Putative matchesQuery points

x

x

xx
x x

xx
x x

x

xx
x

x

x
xx

x

xx

x
x

x

xxx

Figure	4.	Treating	scale-invariant	feature	transform	(SIFT)	features	as	
vectors	in	a	high-dimensional	space	lets	us	quickly	determine	putative	
matches	by	performing	approximate	distance	queries.	Such	a	filtering	
among	the	possible	set	of	correspondences	is	essential	to	make	the	
feature	identity	resolution	problem	tractable.

78	 January/February	2011

Camera	Culture

Feature identity resolution. Once we begin consider-
ing reconstructions from more than two images,
we label each feature point with a unique identi-
fier. If f fi

x
j
y

ij, ˆ()∈m and f fj
y

k
z

jk, ˆ()∈m , then we
label fi

x , f j
y , and fk

z with one globally unique
identifier. Each correspondence we discover simply
suggests that two features from different images
correspond to the same real-world point. We refer
to the process of assigning each feature with a glob-
ally unique identifier as feature identity resolution.

We define F as the set of globally unique features.

Formally, we wish to discover a map, ID: F → Z*,
from the set of features to the set of nonnegative
integers such that ID f ID f f fi

x
j
y

i
x

j
y

ij()= ()⇔()∈, m̂ .
We also wish to impose the nondegeneracy con-
straint that no two features in an image should
have the same identifier. We enforce this condi-
tion in the putative-matching phase by making
the set of putative correspondences between a pair
of images injective (that is, each feature in i can
have only one putative correspondence in j, and
vice versa).

The Social Snapshot project combines collaborative pho-
tography and reconstruction and visualization of objects

in 3D using the commodity cameras and sensors in mobile
phones. The project draws heavily on previous research in
scene visualization from computer graphics and structure
from motion (SFM) in computer vision. Here, we briefly
review some of this research.

Photo Tourism
The advent of digital cameras, coupled with the ability to
upload photos and their corresponding metadata to the
Internet, has integrated a convenient channel for taking
digital pictures and a means of distributing them around
the world. By collecting and combining photographs taken
at the same place, such as popular tourist landmarks, we
can view these locations from different perspectives and
see how they look at different times of the day or even in
different seasons. Photo tourism systems collect Internet
tourism photos, find matching pictures, and organize
them to give users a spatially driven, geometry-aware
browsing experience.

For example, the University of Washington’s community-
photo-collections project and Microsoft’s Photosynth recon-
struct 3D feature points of architectural tourist landmarks
for seamless browsing of multiple photographs.1,2 James
Hays and Alexei Efros filled in missing regions in photo-
graphs of a scene by using other photographs of the same
place.3 Xiaowei Li and his colleagues summarized scenes
of landmarks with iconic scene graphs according to 2D
appearance and 3D geometric constraints.4 Paul Debevec
and his colleagues modeled and rendered architecture
photorealistically from a few photographs.5

The idea of organizing and structuring vast photograph
collections using computer vision techniques seems intui-
tive, given the underlying data’s highly spatial and visual na-
ture. Meanwhile, the wealth and heterogeneity of available
data have presented a constant source of new, interesting
problems for this fledgling research field. However, despite
the tremendous advances in recent photo tourism research,
the underlying data—and hence the mechanism for acquisi-
tion and reconstruction—remains primarily static and

passive. When the structure underlying the photo collection
lacks temporal dynamism, this approach is usually sufficient.
Other recent research explores the acquisition and recon-
struction of time-varying scenes but relies on professional-
grade equipment and a highly synchronized, calibrated
camera network.6

Inertial Sensors
We enforce a gross alignment between inertial-sensor
measurements and estimated camera pose to prevent the
invalid pose estimation of cameras. Significant research
has used inertial sensors to help solve SFM and related
problems. The most recent relevant research in this area
is that of Kihwan Kim and his colleagues, who used GPS
readings to build density maps of urban areas, which they
then combined to produce a coarse reconstruction of
buildings.7 Their article cites other relevant research.

View Interpolation
Noah Snavely and his colleagues’ Photo Tourism system
performs triangulated and planar morphs for view in-
terpolation.2 For triangulated morphs, it renders a mesh
from different views and blends the rendered images on
the basis of the camera position. For planar morphs, the
system projects two views into a common plane; when
the camera moves from one view to another, the system
performs a cross-fade of the projected images. The Photo
Tourism system also selects and warps images on the basis
of the user’s position; older images fade out while newer
images are blended in.8

Instead of images from the different views, we blend
local 3D models. We reconstruct dense point clouds of
the scene and use an iterative constrained optimization
routine to generate triangulated surfaces. Our system in-
terpolates between local-mesh models on the basis of the
viewer’s direction and position.

Michael Goesele and his colleagues perform a global
reconstruction, which is time-consuming but produces
consistent results.9 Conversely, Sameer Agarwal and his
colleagues take a local approach, performing optimizations
only for the images in a given window.1 Social Snapshot op-

Related Work in Scene Visualization and Computer Vision

	 IEEE	Computer	Graphics	and	Applications	 79

We solve the feature-identity-resolution problem
by building a global feature graph GF and assign-
ing each feature the identifier corresponding to its
connected component in the feature graph. To con-
struct GF, we first assign a globally unique identi-
fier id fi

x~() to each image feature. Next, we iterate
over the set of all correspondences ˆ ˆM i j C ij= < <∪ m ,
where C is the number of cameras or the number
of images taken at time step t. For each correspond-
ing pair of features (,) ˆf fi

x
j
y

ij∈m , we add the edge
id f id fi

x
j
y~ ~()(()), to GF.

Finally, we perform a connected-component anal-
ysis on GF. Each connected component consists of
edges representing a sequence of correspondences
between image features. The correspondence re-
lation’s transitivity ensures that every vertex in a
given connected component is posited to refer to
the same real-world feature. To resolve the global
feature identifiers, we assign a unique identifier to
each connected component of GF, and we let each
feature’s identifier equal the identifier of the con-
nected component containing it. Figure 5 illustrates
this concept.

Iterative SFM. We’ve built a custom iterative SFM en-
gine atop the Basic Image Algorithms Library (BIAS;
www.mip.informatik.uni-kiel.de/~wwwadmin/
Software/Doc/BIAS/html/main.html). We begin
the SFM computation by determining the essen-
tial matrix between an initial camera pair because
we have a good estimate of the intrinsic camera
parameters.

The first camera of the pair is at the origin, with
its local frame aligned to the canonical axes of
R3. The essential matrix gives the second cam-
era’s relative position. Once the system has recon-
structed the initial camera pair’s pose, we estimate
the world-space positions of their matching fea-
ture points. The system adds those points with a
low reprojection error to the global set of recon-
structed features R. Rc denotes the set of cameras
that have contributed to the reconstruction of
features in R.

timizes reconstructions locally, each with a group
consisting of the primary camera and its nearest
neighbors. This process is fast; the system han-
dles the inconsistencies the process introduces by
intelligently blending neighboring meshes.

References
 1. S. Agarwal et al., “Building Rome in a Day,” Proc.

IEEE 12th Int’l Conf. Computer Vision (ICCV 09),

IEEE CS Press, 2009, pp. 72–79.

 2. N. Snavely, S.M. Seitz, and R. Szeliski, “Photo

Tourism: Exploring Photo Collections in 3D,”

Proc. Int’l Conf. Computer Graphics and Interactive

Techniques, ACM Press, 2006, pp. 835–846.

 3. J. Hays and A.A. Efros, “Scene Completion Using

Millions of Photographs,” Comm. ACM, vol. 51,

no. 10, 2008, pp. 87–94.

 4. X. Li et al., “Modeling and Recognition of Land-

mark Image Collections Using Iconic Scene

Graphs,” Proc. European Conf. Computer Vision:

Part 1, LNCS 5302, Springer, 2008, pp. 427–440.

 5. P.E. Debevec, C.J. Taylor, and J. Malik, “Modeling

and Render ing Architecture from Photographs: A

Hybrid Geometry- and Image-Based Approach,”

Proc. 23rd Ann. Conf. Computer Graphics and Interac­

tive Techniques, ACM Press, 1996, pp. 11–20.

 6. A. Sankaranarayanan et al., “Modeling and Visu-

alization of Human Activities for Multicamera

Networks,” EURASIP J. Image and Video Processing,

vol. 2009, 2009, article 259860.

 7. K. Kim et al., “Localization and 3D Reconstruc-

tion of Urban Scenes Using GPS,” Proc. 12th IEEE

Int’l Symp. Wearable Computers (ISWC 08), IEEE

Press, 2008, pp. 11–14.

 8. N. Snavely et al., “Finding Paths through the

World’s Photos,” ACM Trans. Graphics, vol. 27,

no. 3, 2008, article 15.

 9. M. Goesele et al., “Multi-view Stereo for Commu-

nity Photo Collections,” Proc. IEEE 11th Intl. Conf.

Computer Vision (ICCV 07), IEEE CS Press, 2007.

ID(f 9) = ID(f 4) = ID(f 2) = 10 1 2

ID(f 6) = ID(f 8) = ID(f 3) = 00 1 2

2f 3

2f 2

1f 8

0f 6

1f 4

0f 9

Figure	5.	Feature	identity	resolution	de-aliases	the	feature	points	 fi
x 	

across	multiple	images	and	assigns	each	feature	a	unique	identifier.	
Having	unique	identifiers	for	referring	to	feature	points	greatly	
simplifies	the	reconstruction	algorithm.

80	 January/February	2011

Camera	Culture

The pipeline’s iterative phase, which poses the
remaining cameras, runs in rounds. We denote the
current round as r. The system ranks all cameras
according to their features’ overlap with R. Let
fi denote the set of features in camera i, and let
ID

f
i i

x
f

ID f
i
x

i
= { }

∈
() denote the set containing those

features’ global identifiers. To rank the cameras, we
consider the cardinality of oi = IDi ∩ R. The system
considers cameras with high overlaps for pose es-
timation in round r. For each considered camera,
i, the system gives a robust linear estimation of
its pose by the direct linear transform in a Ransac
loop,2 considering the 2D-to-3D correspondences
encoded in oi.

When acquiring a dataset, the system is typi-
cally provided with enough photographs so that,
in terms of reconstruction quality, leaving a cam-
era unposed is less costly than incorrectly posing
it. To help avoid grossly incorrect camera poses, we
exploit the inertial-sensor data collected in con-
cert with each photograph. This data consists of
the accelerometer, magnetometer, and GPS read-
ings, which provide a reasonable orientation and
highly approximate position for the device. If the
computed camera pose significantly disagrees with
the inertial-sensor measurements, the system con-
siders the reconstructed pose invalid. In this case,
we postpone the determination of this camera’s
pose until a later round, when hopefully more
overlapping feature points will have been recon-
structed. However, if we can’t determine a valid
pose that at least grossly agrees with the inertial-
sensor measurements, we leave this camera out of
the reconstruction.

Next, the system considers any corresponding
features between i and all the cameras in Rc, and
triangulates the world-space position of the valid
features that aren’t already in R. The system then
adds these newly reconstructed points to R, and
we perform the same procedure for the rest of the
cameras selected for pose estimation in round r.
Once the system has posed all the selected cam-
eras, it advances to round r + 1.

The iterative estimation terminates if there are
no more cameras left to pose or if the remaining

cameras have too few overlaps with R. The system
optimizes the estimated camera poses one final
time, using sparse bundle adjustment.3

Local scene reconstruction. We construct locally op-
timized texture-mapped 2.5D dense point clouds
and meshes for each image. Given the limited
number of synchronously acquired images, we
can’t construct a globally consistent model. We
use a few (two or three) of the neighboring im-
ages to reconstruct the model for each camera.
Because the images cover only a small area, the re-
constructed camera models are locally consistent.
Our goal is to enable seamless navigation without
a globally consistent model.

Next, we find a posed camera’s closest neighbors
for reconstruction. Let C denote the set of posed
cameras. The closest neighbor for a given camera i
is i j i j0 = ()∈argmax #C ID ID R∩ ∩ , the second clos-
est neighbor is i j i i j1 0= ()∈ { }()argmax #\C ID ID R∩ ∩ ,
and the higher-order neighbors follow similarly.

We reconstruct dense point clouds using PMVS
(Patch-Based Multi-view Stereo Software).4 The
3D point clouds are practically 2.5D because the
neighboring cameras have similar viewing direc-
tions and take pictures of only one side. Each point
in this dense reconstruction maintains an average
color, a corresponding visibility map, and a cor-
responding pixel location in each photograph that
contributed to the dense point model. This recon-
struction’s locality ensures that the images map
consistently to the points.

Because the captured photographs represent the
true images from each reconstructed camera posi-
tion, the system creates simple 2.5D depth meshes
to assist in rendering and local 3D navigation. The
construction of a globally consistent mesh is prone
to accumulate tiny errors, contributed from each
reconstructed camera. So, we instead exploit the
images and locally optimized camera positions to
generate optimal meshes for each camera position.

Many point cloud meshing techniques, such
as Poisson surface reconstruction, generate only
watertight surfaces. But these aren’t suitable for
generating 2.5D view-dependent meshes from our
point clouds, which contain numerous disconti-
nuities. Figure 6 shows how Poisson surface re-
construction adds artificial points to close up the
surface when meshing the point cloud.

We’ve developed a novel meshing procedure that
uses an iterative constrained-optimization rou-
tine inspired by a mass-spring system (see Figure
7). The meshes are 2.5D triangulations of dense
points with respect to each camera. For an input
image with dimensions W × H, we create a spring

We’ve developed a novel meshing
procedure that uses an iterative

constrained-optimization routine inspired
by a mass-spring system.

	 IEEE	Computer	Graphics	and	Applications	 81

system with w × h particles, where w << W and
h << H. The system aligns the particles at the
spring system’s corners with the input image’s
world coordinate position computed by the SFM
algorithm. The spring system’s remaining particles
are uniformly spaced between the corner particles.

Next, we use the recovered camera parameters
and construct a virtual camera. We then project the
visible 3D points from the dense point cloud and
the spring particles onto the virtual camera’s view
plane. For each spring particle, we find the closest
projection of the visible 3D points from the dense
point cloud that’s within a radius k. If the system
discovers such a point, the spring particle is asso-
ciated with it. The system divides spring particles
into three sets. Set A contains all the spring par-
ticles that have associated 3D points from the dense
point cloud. Set B contains all the spring particles
at the corners. Set C contains the rest. The system
replaces the position of each spring particle in A

with its associated 3D point from the dense-point-
cloud data, which contains structural information
on the photographed objects in world coordinates.

We then iteratively run the mass-spring op-
timization, keeping spring particles in A and B
static while moving the particles in C. We stop
the optimization once the mass-spring system sta-
bilizes. Finally, we realign the generated mesh by
considering the optimization constraints’ camera
parameters and location. The realignment doesn’t
change the distance between the spring particles
and the virtual camera. The system locally opti-
mizes each resulting mesh for its corresponding
camera. During navigation, the system selects the
displayed mesh according to its acquisition and
viewing parameters.

Display
During this phase, users can navigate in space and
time to explore the reconstructed scene in 3D,

(a) (b) (c) (d)

Figure	6.	View-dependent	mesh	construction:	(a)	the	captured	image;	(b)	the	constructed	dense	point	cloud;	(c)	the	Poisson	
surface	reconstruction,	which	adds	artificial	vertices	to	generate	a	closed	surface	when	the	dense	point	cloud	contains	
discontinuities;	and	(d)	the	mass-spring-inspired	mesh	surface	reconstruction,	which	connects	the	discontinuities	with	respect	to	
the	image	grid	while	maintaining	the	original	vertices.

(a) (b) (c)

Figure	7.	We	use	the	mass-spring	system	to	compute	a	locally	optimized	mesh	for	each	camera:	(a)	the	
initialized	mass-spring	system,	(b)	the	result	of	the	mass-spring	mesh	optimization,	and	(c)	the	mass-spring	
mesh	after	final	realignment.	The	resulting	mesh	closely	matches	the	original	image	when	viewed	from	the	
camera	position.

82	 January/February	2011

Camera	Culture

constrained only by the available data. Here, we de-
scribe how our system handles navigation and the
efficient display of our locally optimized meshes.

Model stabilization (image and object space). During
rendering, the system selects and displays the mesh
that’s optimal with respect to the current camera.
From the reconstruction stage, we have one 3D
mesh for each acquisition camera. Some inconsis-
tencies will exist between these local meshes. To
overcome these inconsistencies and get the best
possible view for each frame, the system priori-
tizes these meshes on the basis of the view and ac-
quisition cameras’ parameters. This prioritization
favors the acquisition cameras with viewing direc-
tions and positions similar to those of the view
camera. The system uses the mesh corresponding
to the best camera from this ranking to show the
final model. When a movement occurs, the system
blends the previous and current best meshes over
several frames to provide a smooth transition.

Navigation. We allow two forms of navigation: au-
tomated flythrough and constrained navigation.
Automated flythrough creates a camera path that
passes through all the initial cameras used to create
the view-dependent mesh. The system conducts a
smooth interpolation from one camera to the next.
This navigation mode lets users see the final gener-
ated model from each initial camera’s perspective.

The system can further optimize this navigation
mode by accepting user-generated paths.

Constrained navigation lets users move around
the model with some limitations (see Figure 8).
When several local meshes are blended together,
gaps will be present because we’re compositing
local meshes that aren’t fully consistent. Costly
global mesh generation is necessary to make these
meshes consistent. To minimize the gaps seen by
the user, we implement a constrained 3D naviga-
tion model. The camera may move only inside the
acquisition cameras’ view frustums. Inside each
frustum, the camera can rotate as long as it can
see the model and as long as the dot product of
the navigating camera’s and original camera’s view
directions is greater than zero. These restrictions
ensure that the scene is mostly visible in every
frame, and they minimize visibility disocclusions.

Results
Here, various reconstructed scenes highlight the
system’s capability to synchronously capture pho-
tos and illustrate the quality of the locally recon-
structed textured meshes.

We built Social Snapshot with performance in
mind. At the same time, we’re dealing with data sets
that differ considerably from the typical datasets
in recent large-scale SFM research. In particular,
our underlying acquisition mechanism is active
and time dependent, so we can use both spatial
and temporal exclusivity to segment our data.
Thus, the system can process each time step from
an acquisition session almost completely in paral-
lel, and this processing’s results need not be re-
united until the viewing phase. This characteristic
makes our system highly scalable.

Nevertheless, for each dataset we present, we
executed all the pipeline phases through the final
camera pose estimation on a single desktop with
4 Gbytes of RAM and a 3-GHz Intel Core 2 Duo,
in under 30 minutes. We performed the dense
point reconstructions in parallel on a cluster of
25 machines, each with two quad-core 2.5-GHz
Intel Xeon CPUs and 16 Gbytes of RAM. For each
dataset, the dense point reconstruction of all of its
constituent time steps required less than 5 min-
utes. Our viewer runs interactively (at approxi-
mately 100 Hz).

The Jumping Skater Dataset
This dataset demonstrates a skateboarder perform-
ing a trick called an Ollie. We captured the images
leading up to and during the jump. To allow for
reconstruction, it’s important to have numerous
cameras capture the subject at almost exactly the

Figure	8.	Users	can	move	freely	in	the	region	marked	in	green.	The	
system	calculates	the	marked	region	using	the	acquisition	cameras’	
view	frustums.	Using	images	from	the	initial	photographs,	the	system	
generates	and	textures	a	locally	optimal	mesh.	The	bottom	left	and	the	
right	images	show	the	actual	photographs;	the	bottom	center	image	is	
the	rendered	mesh	for	navigation.

	 IEEE	Computer	Graphics	and	Applications	 83

same time. This reconstruction illustrates that our
acquisition system, even though based only on
commodity smart phones, is highly synchronized.

Figure 9 shows the reconstructed point clouds
and meshes. Each segment of this beautifully ex-
ecuted jump was captured using 24 cameras; the
dense point reconstruction for each time step con-
tained an average of 77,896 points.

Star Trek “Amok Time” Scene
We recreated the fight scene from the “Amok
Time” episode of Star Trek using action figures
and captured the scene as a stop-motion anima-
tion sequence. Stop-motion animation provides a
fun way to synthesize creative narratives. Social
Snapshot uses numerous cameras to augment the
animation with a new dimension.

Figure 10 shows the reconstruction of two sam-
ple time steps. We reconstructed each time step
using 13 cameras; each time step’s dense point set
contained an average of 66,120 points.

Social Snapshot presents several interesting
venues for future research. In particular, high-

quality inertial sensors on new devices would let us
rely less on costly global optimization procedures
and more on direct sensor readings. In particular,
the newest generation of smart phones, such as the
iPhone 4, include both an accelerometer and a gy-
roscope. This makes it possible to delineate between
rotational and linear acceleration, and therefore to
track the motion of the phone. The ability to per-
form such tracking hints at the possibility of more
efficient reconstruction algorithms. For example,
it might be possible to use an iterative SFM pro-
cedure to pose the cameras only in the first ac-
quisition time step, with the camera poses in all
remaining time steps tracked and updated through
the inertial-sensor readings. It’s also likely that the
ever-growing array of sensors will enjoy a syner-
gistic relationship with the reconstruction algo-
rithms to improve not only the reconstructions’
efficiency but also their accuracy.

Acknowledgments
This research has been supported partly by US Na-
tional Science Foundation grants CCF 04-29753,
CNS 04-03313, CCF 05-41120, and CMMI 08-
35572. We also gratefully acknowledge the support
provided by the Nvidia CUDA (Compute Unified
Device Architecture) Center of Excellence Award to
the University of Maryland. Any opinions, findings,
conclusions, or recommendations expressed in this

article are the authors’ and don’t necessarily reflect
the research sponsors’ views.

References
 1. D.G. Lowe, “Object Recognition from Local Scale-

Invariant Features,” Proc. 7th IEEE Int’l Conf.
Computer Vision (ICCV 99), vol. 2, IEEE CS Press,
1999, pp. 1150–1157.

 2. R. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, 2nd ed., Cambridge Univ. Press,
2004.

 3. M.A. Lourakis and A.A. Argyros, “SBA: A Software
Package for Generic Sparse Bundle Adjustment,”
ACM Trans. Math. Software, vol. 36, no. 1, 2009, ar-
ticle 2.

 4. Y. Furukawa and J. Ponce, “Accurate, Dense, and
Robust Multi-view Stereopsis,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 32, no. 8, 2010,
pp. 1362–1376.

(a)

(b)

Figure	9.	Reconstructing	(a)	point	clouds	and	(b)	meshes	from	the	
jumping	skater	dataset,	for	the	skateboard	taking	off	and	the	jump’s	
apex.	(Figure	2	shows	an	intermediate	frame	for	this	same	dataset.)	
This	figure	illustrates	the	successful	reconstruction	of	a	highly	dynamic	
underlying	dataset.	Such	a	reconstruction	wouldn’t	be	possible	without	
the	active	synchronization	mechanism,	which	is	an	integral	part	of	the	
Social	Snapshot	system.

84	 January/February	2011

Camera	Culture

Robert Patro is pursuing a PhD in computer science at the
University of Maryland, College Park. His research interests
include computational biology, scientifi c visualization, and
computer graphics. Patro has a BS in computer science from
the University of Maryland, College Park. Contact him at
rob@cs.umd.edu.

Cheuk Yiu Ip is a pursuing a PhD in computer science at
the University of Maryland, College Park. His research in-
terests include computer graphics and 3D shape acquisition
and comparison. Ip has an MS in computer science from
Drexel University. Contact him at ipcy@cs.umd.edu.

Sujal Bista is pursuing a PhD in computer science at the
University of Maryland, College Park. His research interests
include computer graphics and human-motion understand-
ing. Bista has an MS in computer science from the Uni-
versity of Maryland, College Park. Contact him at sujal@
cs.umd.edu.

Amitabh Varshney is a professor of computer science
and the director of the Institute for Advanced Computer
Studies at the University of Maryland, College Park. His
research focuses on exploring the applications of interac-
tive and high-performance graphics and visualization in
engineering, science, and medicine. Varshney has a PhD in
computer science from the University of North Carolina at
Chapel Hill. He’s an IEEE Fellow. Contact him at varshney@
cs.umd.edu.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

(a)

(b)

Figure	10.	Reconstructed	(a)	point	clouds	and	(b)	meshes	for	two	
time	steps	of	a	stop-motion-animation	sequence	based	on	the	“Amok	
Time”	episode	of	Star Trek.	Despite	the	fact	that	each	reconstructed	
model	is	created	using	only	a	small	subset	of	the	cameras,	the	resulting	
renderings	are	visually	convincing.

Silver Bullet Security Podcast
In-depth inter v iews w i th secur i t y gurus . Hos ted by Gar y McGraw.

w w w.computer.org /secur i t y /podcasts
Sponsored by

