Network Visualization to Support Exploration of Supreme Court Decision Patterns

Aleks Aris
Ben Shneiderman
Outline

• Graph Drawing Aesthetics
• Node Placement Methods
• Exploring Court Cases
• Semantic Substrate Approach
• Demo
• Conclusion
• Credits & Information
Graph Drawing Aesthetics

- Minimize link crossings
- Draw links as straight as possible
- Maximize minimum angle
- Maximize symmetry
- Minimize longest link
- Minimize drawing area
- Centralize high-degree nodes
- Distribute nodes evenly
- Maximize convexity (of polygons)
- Keep multi-link paths as straight as possible
- …

Source: [9] Davidson & Harel
Node Placement Methods

Force-directed
- Visual Thesaurus

Circular
- Schemaball

Clustering
- Vizster

Temporal
- Historiographic mapping

Geographical Map
- SeeNet

Our approach
- Place nodes based on node attributes
- Create an artificial map for the data: “Semantic Substrate”
- Prototype tool: NVSS
Exploring Court Cases

• One type of court case:
 – regulatory takings cases

• Federal Courts
 – Supreme Court
 – Circuit Courts
 • 1st-11th Circuit, DC Circuit, Federal Circuit
 – District Courts
 • Under the jurisdiction of circuit courts
Data Set Characteristics

• Complete dataset (refined version):
 – 2345 court cases; 14,388 citations

• Subsets analyzed:
 – 1) Supreme & Circuit Court cases cited more than 45 times:
 • 49 cases (36S+13C); 368 links
 – 2) All Supreme cases, Circuit cited > 15, District cited > 2
 • 287 cases (52S+112C+123D); 2032 links
Semantic Substrate Approach

Place nodes according to node attributes

Example:
• Court cases
• Grouped into Supreme and Circuit Court cases
• Placed from left to right in increasing time
Semantic Substrates in NVSS

• Using node attributes:
 – Group nodes into regions
 – Place nodes within regions

• Provide control on visibility of links
Filtering on time attribute

- Choose a region
 (ex: check “Circuit”)
- Restrict time
 (ex: 1991-1993)
- Examine outgoing links from the subset of nodes
NVSS Demo

Network Visualization by Semantic Substrates
Conclusion

• Semantic substrates promise
 – Increased understanding and better insight due to:
 • Instant perception of groups
 • Comprehensible layout
 • Rapid exploration of link patterns with filters

• Future Work:
 – Better support for substrate creation
 – Enhanced filtering mechanism
 – New approaches for displaying links
 – Scalability
 – Evaluation via case studies
Credits & Information

- Researchers
 - Aleks Aris
 - Prof. Ben Shneiderman

- Partial funding provided by
 - U.S. National Science Foundation

- Collaborators
 - Prof. Wayne McIntosh
 - Stephen Simon
 - Ken Cousins
 - Cite-It team members

For more information:
http://www.cs.umd.edu/hcil/nvss

© University of Maryland 2006