
NASSI-SHNEIDERMAN CHARTS
AN ALTERNATIVE TO FLOWCHARTS FOR DESIGN

by
Cornelia M. Yoder and Marilyn L. Schrag

IBM Corporation
System Products Division
Endicott, New York 13760

ABSTRACT

In recent years structured programming has
emerged as an advanced programming technology.
During this time, many tools have been developed for
facilitating the programmer% use of ‘structured pro-
gramming. One of these tools, the Structured Flow-
charts developed by I. Nassi and B. Shneiderman in
1972, is proving its value in both the design phase and
the coding phase of program development.

Several programming groups in System Products
Division, Endicott, New York, have used the Nassi-
Shneiderman charts as replacements for conventional
flowcharts in structuring programs. The charts have
been used extensively on some projects for structured
walk-throughs, design reviews, and education.

This paper describes the Nassi-Shneiderman
charts and provides explanations of their use in pro-
gramming, in development process control, in walk-
throughs, and in testing. It includes an analysis of the
value of Nassi-Shneiderman charts compared to other
design and documentation methods such as pseudo-code,
HIP0 charts, prose, and flowcharts, as well as the au-
thors’ experiences in using the Nassi-Shneiderman
charts.

The paper is intended for a general data proces-
sing audience and although no special’knowledge is re-
quired, familiarity with structured programming con-
cepts would be helpful. The reader should gain insight
into the use of Nassi-Shneiderman charts as part of the
total development process.

INTRODUCTION

The search for a good design method and a good
documentation method to use in conjunction with struc-
tured programming has resulted in several widely vary-
ing yet very useful techniques. One of these is the
‘Structured Flowcharts of I. Nassi and B. Shneiderman.

The Nassi-Shneiderman Charts have many fea-
tures to recommend them for use in top-down structured
programming environment, not the least of which is the
difficulty of designing unstructured programs using
the charts. The authors were introduced to this chart-
ing technique in 1973 and have been using it success-
fully on their respective projects since that time. The
use of Nassi-Shneiderman Charts has spread to almost
everyone who has been exposed to their use as the need’
to express and verify the design and documentation of
programs has increased.

Reprinted from Proceedings, ACM CM SIGSOFT/BIGMETRICS Soft ware and
Assurance Workshop, November 1978. Published by ‘ACM, reprinted by permis-
sion.

386

Nassi-Shneiderman Charts or N-S Charts is not
the only design language that has been developed re-
cently; for example, pseudo-code is another excellent
technique. Nor is N-S Charting the only documentation
method; pseudo-code can be used for program docu-
mentation, and HIP0 charting also has many advocates,

One of the purposes of this paper will be to com-
pare N-S Charts to other design and documentation me-
thods in a constructive way - each of the different tech-
niques has its advantages and disadvantages, and each
is useful in certain situations. Before these compari-
sons, there is a brief introduction to Structured Pro-
gramming followed by a description of the Nassi-Shnei-
derman Charts.

STRUCTURED PROGRAMMING CONCEPTS

Structured programming, contrary to some pro-
grammers’ beliefs, is not a set of coding rules and re-
strictions. Structured programming is a style, an
attitude toward programming that starts with funda-
mental goals of the programming process. Classically,
programming goals were correctness, efficiency, and
creativity. Of these, correctness is the only valid pro-
gramming goal remaining today. Efficiency has become
of minor importance with the advent of very high speed
computers and virtual memories. Creativity, not bad
itself, was classically directed toward cleverness and
obscurity, with.frequently detrimental results.

In today’s programming environment new goals
have been set. Correctness remains of primary impor-
tance; however, maintainability (the ease of fixing er-
rors), modifiability (the ease of making changes), and
readability (the clarity of the program) have replaced
program efficiency and abstruseness as desirable pro-
gram characteristics. The programmer who sacrifices
modifiability to save a few bytes or who gleefully hands
over a program saying, l'll bet you can’t guess what
this one does!"!I’ is finally receiving the disdain so long
deserved.

Once these new programming goals were set, it
was inevitable that many programming techniques
would be developed to achieve them. One of the best
techniques has been structured code. (The distinction
in terms is clear. Structured coding is the set of stan-
dard coding methods for accomplishing the goals of
structured programming.) Structured coding is a set
of program structures sufficient for writing any proper
program (one entry point and one exit point) together
with some rules for segmentation and indentation. The
required set of program structures is not unique; one

Charles

Charles

minimum set consists of structures titled SEQUENCE,
IFTHENELSE, and DOWHILE. Frequently, other struc-
tures such as DOUNTIL and CASE are included. These
structures are diagrammed using conventional flow-
chart symbols in Figure 1.

IFTHENELSE

S E Q U E N C E
F T

.
“E L S E ” “THEN”

P R O C E S S P R O C E S S

I

DOWHILE DOUNTIL L

“WHILE”
P R O C E S S \

CASE

P R O C E S S A PROCESS B 0.0 P R O C E S S N

Figure 1. Required Set of Program Structures

NASSI-SHNEIDERMAN CHARTS

In SlGPLAN Notices of the ACM, August, 1973,
Messrs. Nassi and Shneiderman published a new flow-
charting language with a structure closely akin to that
of structured code. The advantages they claimed for
their charts have proven correct; they are as follows:

1. The scope of iteration is well-defined and
visible.

2. The scope of IFTHENELSE clauses is well-
defined and visible; moreover, the conditions
or process boxes embedded within compound
conditions can be seen easi ly from the dia-
gram.

3. The scope of local and global variables is im-
mediately obvious.

4, Arbitrary transfers of control are impossible.

5. Complete thought structures can and should
fit on no more than one page (i .e. no off-page
connectors) .

6. Recursion has a trivial representation.

The authors have added another advantage to
those listed above:

7. These charts are adaptable to the peculiarities
of the system or language they are used with.

By combining and nesting the basic structures,
all of which are rectangular, a programmer can design
a structured, branch-free program. Figure 2 shows

P R O C E S S
STATEMENT

Figure 2. Process Symbol

the basic PROCESS symbol - a rectangle representing
assignments, calls, input/output statements, or any
other sequential operations. In addition, a PROCESS
symbol may contain other symbols nested within it.
The PROCESS symbol may be of any chosen dimensions
provided the symbol fits on one page. The symbol used
to represent a decision is shown in Figure 3.

ELSE THEN
CLAUSE CLAUSE

Figure 3. Decision Symbol

This IFTHENELSE symbol contains the test or de-
cision in the upper triangle and the possible outcomes
of the test in the lower triangles. “Yes” and “No” may
be substituted for "True" and "False,” and there is no
particular objection to switching them right and left,
although consistency is desirable. The rectangles con-
tain the functions to be executed for each of the out-
comes. Notice the ELSE and THEN clause boxes are
actually PROCESS symbols and may contain any valid
PROCESS statements or nested structures.

Repeating processes are represented by an itera-
tion symbol. One of three symbols may be used depend-
ing on whether loop termination is at the beginning or
the end of the loop. Figure 4 shows a DOWHILE symbol,
used for loops which test a condition at the beginning.

DO WHILE CONDITION

W H I L E
P R O C E S S

Figure 4. DOWHILE Symbol

387

Charles

Charles

Charles

Charles

Figure 5 is a DOUNTIL symbol, for loops which test for
termination at the end. Figure 6 is a combination for
loops with compound tests and may also be used for
special constructs such as DO FOREVER or for setting
off BEGIN/END blocks.

UNTIL
PROCESS

DO UNTIL CONDITION

Figure 5. DOUNTIL Symbol

BEGIN
.

PROCESS

END

Figure 6. Other Acceptable Symbols
The CASE structure is represented by the symbol

in Figure 7. This form of CASE requires the setting of
a variable to an integer value, and the choice of path is
based on the value of that variable. Figure 8 depicts a
more powerful form of CASE, but one that requires the
designer to be certain the conditions chosen are mutu-
ally exclusive and cover all necessary condition testing.

Nesting of structures to create programs should
now be an obvious extension of the use of basic symbols.
Figure 9 shows an N-S chart to calculate and print an
FICA report in a style useful to designers. Figure 10
shows the same chart written in a style closer to the
programming language, such as programmers might use.

I=1 I=2
PROCESS PROCESS

I=n
PROCESS

Figure 7, CASE Symbol

CONDITION 111
PROCESS

CONDITION 2
PROCESS 0 0 a

CONDITION n DEFAULT
PROCESS

I
PROCESS

Figure 8. Alternative CASE Symbol

388

Charles

Charles

SET FICA
DEDUCTION
TO ZERO SET DEDUCTION

SO YEAR - TO - DATE
WILL NOT EXCEED
MAXIMUM

READ THE FIRST PAYROLL RECORD

DO WHILE THERE IS MORE DATA TO PROCESS

YEAR - TO - DATE FICA LESS THAN
MAXIMUM ?

CALCULATE FICA
DEDUCTION

YEAR - TO - DATE FICA PLUS
D E D U C T I O N >

ADD DEDUCTION TO
YEAR - TO - DATE FICA

SET NET PAY TO GROSS PAY MINUS FICA DEDUCTION

PRINT NAME, GROSS PAY, FICA DEDUCTION, YEAR -TO - DATE
FICA, NET PAY

READ NEXT PAYROLL RECORD

Figure 9. Example of N - S Chart Used For Design

USING NASSI-SHNEIDERMAN CHARTS

The practical use of N-S charts requires some
basic techniques for optimum benefits. The major uses
of N-S charts fall into three categories: Creating the
logic design, programming from the charts, and writ-
ing program documentation. In addition, the N-S charts
can be used for higher level design and procedural
documentation; they have also been very well received
for walkthroughs and design reviews.

I. CREATING THE LOGIC DESIGN

Nassi-Shneiderman charts were developed as a
better way than traditional flow charts to describe the
logic of a structured program. Drawing the chart and
developing the logic go hand-in-hand, with the con-
straints of N-S charts (single page, no branch symbols)
forcing the development of a structured design, that
will in turn lead to structured code.

How to Start

Let us assume that functional design for a project
has been completed, and that a modular design tech-
nique was used to determine function, input, and out-
put for each module to be programmed. The program-
mer is now ready to design logic for structured coding.

389

The N-S chart starts with a rectangle drawn at
the top of the page. This block might be any of the
N-S symbols, depending on the module’s function. If
the module requires initialization of some variables,
the first block is probably a processing symbol. If the
module’s function is performed repeatedly, a block
with an iterative symbol will be close to the top of the
page. If the function to be performed is conditional, a
decision symbol will be used initially.

Arranging the N-S Structure

When a block is drawn symbolizing a decision,
the programmer must make an actual decision about the
assignment of processing paths on the chart (see Fig-
ure 11) . An effective technique is to locate on the right
the path which in coding would be equivalent to the
‘then’ clause of an 'if' statement, and to locate on the
left the path equivalent to the ‘else’ clause (see Figure
12). A consistent technique for path assignment makes
the chart easier to draw and to read,

Suppose repeated decisions must be made. It is
possible that much of the page would be taken up by
blank paths (corresponding to null ELSE statements),
or by paths with little processing. Very little room
would then be left for describing the main processing
path of the program (see Figure 13) .

INITIALlZE AND OPEN FILES

WRITE REPORT HEADINGS TO PRINT FILE

READ PAYROLL FILE

D O W H I L E NOT END OF FILE (ON PAYROLL FILE)

YTD FICA< MAXFICA

DEDUCTION = FICA % x GROSSPAY

DEDUCTION = 0
DEDUCTION =
MAXFICA -
YTDFICA

YTDFICA = YTDFICA
+ DEDUCTION

NETPAY = GROSSPAY = DEDUCTION

CREATE OUTPUT REPORT RECORD
L

WRITE REPORT RECORD TO PRINT FILE
I

READ PAYROLL FILE

C L O S E F I L E S

Figure 10. Example of N - S Chart Used For Coding

Figure 11. Choice of Path Assignment

When to Segment

As the programmer continues to draw the chart
and develop the design, nested iteration and decision
symbols will cause the blocks to get increasingly smal-
ler. If the programmer did not give some thought
initially to segmentation of the module, he or she may
find that space has run out on the chart before the de-
sign is complete. Any rectangular position of an N-S
chart can be removed from the main routine, replaced
by a processing block, and made a separate segment or
internal subroutine with its own N-S chart. Figure 15
shows in dark lines three of the possible segments
which could be removed from the main routine. The
choice should depend on the extent to which the portion
that is removed constitutes a single function.

Differences in N-S Structure

The N-S chart for a module will visually reflect
the design of the module. It may be large or small,
complex or simple, depending on the function to be per
formed. A module at the top of the modular design
hierarchy will consist mainly of calls to lower-level
modules and evaluation of return codes. Its chart will
probably have a diagonal look as can be seen in Fig-
ure 16.

A module at the lowest level will perform the
actual processing of the data. Figure 17 shows such a
module, with a single call to a service module to write
an error message.

390

Charles

Charles

Figure 13. Unskewed N - S Chart

To allow more room on the chart for describing
the processing paths, the decision triangle can be
skewed, as in Figure 14, allocating space as it is
needed.

YES

P R O C E S S

Figure 14. Skewed N - S Chart

II. PROGRAMMING FROM N-S CHARTS

Once the logic design for the module is completed,
coding and testing of the module can begin. In both
coding and testing, the N-S chart serves as a guide.

Coding

Translating from the N-S chart to code, especi-
ally in a high level language, is very easy; this ease
is one reason why N-S charts have been accepted en-
thusiastically by programmers who have tried them.

The code will be structured; there is no possi-
bility of a branch, and the coded segments wi II be
small. IFTHENELSE statements are well defined by the
chart, as are the limits of DO structures.

Testing

The N-S chart can be used as a guide while test-
ing the module. The number of test cases which will
be required may be readily determined by counting
decision blocks (count 2 per decision) and iteration
blocks (count 2 or 3 per loop, depending on boundary
conditions of the loop)..

The precise test cases needed and data required
may be developed directly from the charts, and the
tested paths may be checked off on the charts as tests
are executed. Figure 15. Possible Choices for Segmenting an N-S Chart

3 9 1

Charles

Charles

Charles

Charles

Charles

CALL ALPHA (START TEST)

YES

INITIALIZE TABLES

CALL BETA

GOOD RETURN?

CALL GAMMA

CALL DELTA

CALL EPSILON
L

WRITE TEST OUTPUT

Figure 16. Diagonal N - S Chart

DO FOR EACH TABLEA ENTRY WHILE MATCH FOUND

SEARCH TABLEB FOR MATRIX ADDRESS

MATCH FOUND ?

YES

PUT COORDINATES IN HIT TABLE

MATCH FOUND ?

CLEAN UP FOR
GOOD
TERMINATION

CALL MESSAGE SUBROUTINE
(“NO MATCH” MESSAGE)

L

CLEAN UP FOR BAD TERMINATION

GOOD RETURN BAD RETURN

Figure 17. Nondiagonal N - S Chart

392

III. N-S CHARTS AS PROGRAM DOCUMENTATION

The Nassi-Shneiderman chart is a graphic repre-
sentation of a module’s logic design and a blueprint for
the code. This makes it an excellent tool to use in ed-
ucating other programmers on the function of the mod-
ule. An N-S chart provides a maintenance programmer
with a quick reference for finding the code performing
any logical function.

IV. OTHER USES

Other parts of this paper described the use of
N-S charts to design and program structured code.
The high acceptance level of the charts by programmers
who have used them indicates that use of the symbols
may expand to other areas.

For example, a possible use may be in functional
design. Process blocks can be described in general
terms, rather than at the detailed level used for logic
design.

As usage of N-S symbols extends beyond pro-
grammers to people in other technical areas, as have
the symbols of traditional flowcharts, they can become
a part of user’s procedural documentation.

An area where use of N-S charts has already ex-
panded beyond initial expectations is for presentations
at walkthroughs and review. The graphic, visually
descriptive qualities of the charts make them easy to
use as presentation aids when describing program
function to users and other nonprogramming people.
Code inspections are significantly easier when a cor-
responding N-S chart is available to graphically depict
the code being inspected. If N-S charts are used for
design inspections, then code may be inspected directly
against them.

CONCLUSIONS

Many design/documentation methods are in use
today; some of these methods have existed for many
years, and some methods were recently developed.
Among the former are prose, the writing of specifica-
tions and documentation in English paragraphs, and
conventional flowcharting. The latter includes N-S
charts, pseudo-code, and HIPO Charts. None of these
methods is bad in itself; for a particular use, one is
often better than another.

For example, a program design at a high level,
such as a functional specification, may lend itself to
prose and to HIPO Charts. Yet, neither of these is
much good for detailed logic specifications; prose is
often ambiguous and seldom possible to use for coding.
HIPO Charts have no facilities for structuring program
logic and are also very difficult to use in coding.

Flowcharting has been the method to get from
prose or HIPO Charts to code; however, flowcharting
is quickly giving way to pseudo-code and Nassi-Shnei-
derman charts. The latter items have structuring abil-
ity built into the technique, and both can be easily
translated directly into code. Pseudo-code has the ad-
vantage of depicting graphically the logic and also
clearly and visually identifying processes within com-
pound conditionals,

393

For education of users and for walkthroughs or
reviews, a combination of HIPO Charts for input/func-
tion/output and N-S charts for logical flow has proven
extremely useful. Flowcharts and pseudo-code are too
strongly programming-oriented for use by nonprogram-
mers. Pseudo-code might also be useful for code in-
spections particularly if coded into the programs as
comments.

Program documentation has traditionally been
separate from programs. One of the hoped-for bene-
fits of structured code was self-documenting programs,
To some extent, this benefit has been realized; yet, in
many cases supplementary documentation is required.
Pseudo-code provides one excellent way of including
this supplementary explanation of code within the pro-
gram as comments. Modification of documentation then
requires exactly the same mechanism as modification of
the code, and as a result, it aids in maintaining the
documentation at a current level.

However, if external program documentation is
required, a graphical representation of the code (some-
thing impossible to code into the program) can be sig-
nificantly better. The success of HIPO Charts has de-
monstrated this fact for overview and function documen-
tation. For displaying logic, N-S charts are much
better than HIPO Charts and far better than flowcharts
and prose.

SUMMARY

Nassi-Shneiderman Charts have proven to be
useful in nearly all phases of program development
from early design through walk-throughs, coding,
testing, and user education. An excellent graphic
technique, the N-S charts provide a simple, yet elegant
language that, intentionally, is compatible with struc-
tured programming goals and methods. As Nassi and
Shneiderman wrote,

“Programmers who first learn to design
programs with these symbols never de-
velop the bad habits which other flow-
chart notation systems permit.. Since
no more than fifteen or twenty symbols
can be drawn on a single sheet of paper,
the programmer must modularize his
program into meaningful sections. The
temptation to use off-page connectors,
which lead only to confusion, is elimi-
nated. Finally, the ease with which a
structured flowchart can be translated
into a structured flowchart can be trans-
lated into a structured program is plea-
santly surprlslng . "1

Because Nassi-Shneiderman charts are only now
becoming known, the method has not been fully ex-
ploited. There is potential in many areas for expand-
ing on the usage of such structured charts and if the
logical thinking we are now insisting on in program-
ming can be spread to other disciplines, we cannot
lose.

BIBLIOGRAPHY

1. I. Nassi and B. Shneiderman, "Flowchart Tech-
niques for Structured Programming," SIGPLAN
Notices of the ACM, v. 8, n. 8, 12-26 (August
1973).

